#### Bayesian Variable Selection for Order Restricted Dose-Response Models: Model Selection and Model Complexity

Belay Birlie, Martin Otava, Ziv Shkedy, Adetayo Kasim

BSS 2016, Namur

October 2016



# Outline of the presentation

Dose-response modeling

**Bayesian Variable selection** 

Order Restricted information Criteria

Application

**Further Topics** 



# Dose-response modeling

- Increasing dose of therapeutical compound.
- Variety of possible responses:
  - Toxicity.
  - Inhibition or stimulation.
- Goal:
  - Determine if there is any relationship.
  - If so, what is the shape of the profile.

universit

# Dose-response modeling

- Increasing dose of therapeutical compound.
- Variety of possible responses:
  - Toxicity.
  - Inhibition or stimulation.
- Goal:
  - Determine if there is any relationship.
  - If so, what is the shape of the profile.

#### Order Constraint

- Compound effect becomes stronger when dose is increased.
- Monotone restriction (non-decreasing or non-increasing).
- Zero effect is meaningful.



# Motivating Example

- Toxicity study (Yanagawa and Kikuchi 2001)
  - N = 24 dogs randomized in to 4 groups
  - Each group of six receive one treatment regime
    - Placebo and three active doses of Mosapride citrate (12.5, 50, and 200 mg/kg)
  - Response: Liver weight relative body weight
    - High value of the response suggest higher toxicity of Mosapride citrate



universitei ∢□›∢∄›∢≣›∢≣›<mark>⊳⊵</mark>hasse

#### Model Formulation

One-way ANOVA model formulation:

$$Y_{ij} = \mu_i + \epsilon_{ij}\epsilon_{ij} \sim N(0,\sigma^2)$$

• Order restriction:  $H^{up} = \mu_0 \le \mu_1 \le \dots \le \mu_{K-1}$  or  $H^{dn} = \mu_0 \ge \mu_1 \ge \dots \ge \mu_{K-1}$ 



universite

Basic Model

$$Y_{ij} \sim N(\mu_i, \tau^{-1})$$

Modeling of the mean

$$E(Y_{ij}) = \mu_0 + \sum_{h=1}^{i} z_h \delta_h, h = 1, ..., K - 1$$



Basic Model

$$Y_{ij} \sim N(\mu_i, \tau^{-1})$$

Modeling of the mean

$$E(Y_{ij}) = \mu_0 + \sum_{h=1}^{i} z_h \delta_h, h = 1, ..., K - 1$$

univer

Priors and Hyper Priors

$$\begin{array}{ll} \mu_{0} \sim \textit{N}(\eta_{\mu_{0}}, \tau_{\mu_{0}}^{-1}) & \tau \sim \Gamma(10^{-3}, 10^{-3}) \\ \delta_{h} \sim \textit{N}(\eta_{\delta_{h}}, \tau_{\delta_{h}}^{-1})\textit{I}(0,\textit{A}) & \textit{z}_{h} \sim \textit{Bernoulli}(\pi_{h}) \\ \eta_{\mu_{0}} \sim \textit{N}(0, 10^{6}) & \tau_{\mu_{0}} \sim \Gamma(1, 1) \\ \eta_{\delta_{h}} \sim \textit{N}(0, 10^{6}) & \tau_{\delta_{h}} \sim \Gamma(1, 1) \\ \eta_{h} \sim \textit{U}(0, 1) \end{array}$$



| Model | Up: Mean structure        | Z       |
|-------|---------------------------|---------|
| $g_0$ | $\mu_0=\mu_1=\mu_2=\mu_3$ | (0,0,0) |
| $g_1$ | $\mu_0<\mu_1=\mu_2=\mu_3$ | (1,0,0) |
| $g_2$ | $\mu_0=\mu_1<\mu_2=\mu_3$ | (0,1,0) |
| $g_3$ | $\mu_0<\mu_1<\mu_2=\mu_3$ | (1,1,0) |
| $g_4$ | $\mu_0=\mu_1=\mu_2<\mu_3$ | (0,0,1) |
| $g_5$ | $\mu_0<\mu_1=\mu_2<\mu_3$ | (1,0,1) |
| $g_6$ | $\mu_0=\mu_1<\mu_2<\mu_3$ | (0,1,1) |
| $g_7$ | $\mu_0<\mu_1<\mu_2<\mu_3$ | (1,1,1) |
|       |                           |         |

 $H_{up}: \mu_0 < \mu_1, \dots < \mu_{k-1}$ 

・ロト ・ 日 ・ ・ 日 ・ ・ 日

universiteit

- Estimation
  - Posterior distribution for all dose-specific means.
  - Use posterior mean of such distribution as our estimation. Connection of Bayesian model averaging.
    - posterior model probabilities are weights.

$$\hat{\mu}_{BVS} = \sum_{r=0}^{R} \mathbf{w}_{r} \hat{\mu}_{r}$$

universiteit

- Model Selection
  - Vector  $z = (z_1, ..., z_k(K1))$  uniquely defines the model.
  - ► Transformation  $G(z) = 1 + \sum_{i=1}^{K_1} z_i 2^{i-1}$  unique value for each model.
  - ► In each MCMC iteration we sample one vector  $z = (z_1, ..., z_{K1})$ .
  - Posterior mean of indicator G(z) = r + 1 translates into posterior probability of the model g<sub>r</sub>
    - For posterior probabilities holds:

 $P(G(z) = r + 1 | data) = P(g_r | data)$ 

# Order Restricted information Criteria

- In the case of order restricted hypothesis, the common information criteria's such as AIC, BIC, etc. is not suitable for model selection
- ORIC (Anraku ,1999) take in to account monotonicity induced in the mean structure

$$ORIC = -2logL_{OR}(\theta|data) + \sum_{l=1}^{K} lP(l, k, w)$$

- Level Probability P(I, k, w)
  - Express the probability of obtaining number / of distinct means
  - For example, for K = 4, P(1, k, w) = 0.25, P(2, k, w) = 0.46, P(3, k, w) = 0.25, P(4, k, w) = 0.04

A D A A P A E A E A E A B A BASS

#### Order Restricted information Criteria

Model selection

Approximation of Posterior Model probability

$$w_r = P_{IC}(g_r | data) = \frac{exp(-\frac{1}{2}\Delta ORIC_r)}{\sum_{s=1}^{R} exp(-\frac{1}{2}\Delta ORIC_s)}$$

where  $\Delta ORIC_r = ORIC_r - ORIC_{min}$ 

Model complexity: weighted sum of number of levels

$$EC = \sum_{l=1}^{K} IP(l, k, w)$$

- For example, for K = 4, EC = 2.083
- It is the expected number of levels when isotonic regression is used to estimate the means and the data are generated under the null hypothesis

universiteit

# Application



universiteit < □ > < @ > < ≧ > < ≧ > ▶ ▶ ▶ ▶ ▶ ▶ ▶ hasset

# Application



universiteit < □ > < @ > < ≧ > < ≧ > ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ♦ ħasset

# Further Topics

- Model Complexity
- Hypothesis Testing

universiteit

A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A □ > A