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Dose-response modeling

I Increasing dose of therapeutical compound.
I Variety of possible responses:

I Toxicity.
I Inhibition or stimulation.

I Goal:
I Determine if there is any relationship.
I If so, what is the shape of the profile.

I Order Constraint
I Compound effect becomes

stronger when dose is increased.
I Monotone restriction

(non-decreasing or
non-increasing).

I Zero effect is meaningful.
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Motivating Example

I Toxicity study (Yanagawa and
Kikuchi 2001)

I N = 24 dogs randomized in to 4
groups

I Each group of six receive one
treatment regime

I Placebo and three active doses
of Mosapride citrate (12.5, 50,
and 200 mg/kg)

I Response: Liver weight relative
body weight

I High value of the response
suggest higher toxicity of
Mosapride citrate



Model Formulation

I One-way ANOVA model formulation:

Yij = µi + εijεij ∼ N(0, σ2)

I Order restriction:
Hup = µ0 ≤ µ1 ≤ ... ≤ µK−1 or Hdn = µ0 ≥ µ1 ≥ ... ≥ µK−1



Bayesian Variable selection (BVS)
I Basic Model

Yij ∼ N(µi , τ
−1)

I Modeling of the mean

E(Yij) = µ0 +
i∑

h=1

zhδh,h = 1, ...,K − 1

I Priors and Hyper Priors

µ0 ∼ N(ηµ0 , τ
−1
µ0

)

δh ∼ N(ηδh , τ
−1
δh

)I(0,A)

ηµ0 ∼ N(0,106)

ηδh ∼ N(0,106)

τ ∼ Γ(10−3,10−3)

zh ∼ Bernoulli(πh)

τµ0 ∼ Γ(1,1)

τδh ∼ Γ(1,1)

πh ∼ U(0,1)



Bayesian Variable selection (BVS)
I Basic Model

Yij ∼ N(µi , τ
−1)

I Modeling of the mean

E(Yij) = µ0 +
i∑

h=1

zhδh,h = 1, ...,K − 1

I Priors and Hyper Priors

µ0 ∼ N(ηµ0 , τ
−1
µ0

)

δh ∼ N(ηδh , τ
−1
δh

)I(0,A)

ηµ0 ∼ N(0,106)

ηδh ∼ N(0,106)

τ ∼ Γ(10−3,10−3)

zh ∼ Bernoulli(πh)

τµ0 ∼ Γ(1,1)

τδh ∼ Γ(1,1)

πh ∼ U(0,1)



Bayesian Variable selection (BVS)



Bayesian Variable selection (BVS)

I Estimation
I Posterior distribution for all dose-specific means.
I Use posterior mean of such distribution as our estimation.

Connection of Bayesian model averaging.
I posterior model probabilities are weights.

µ̂BVS =
R∑

r=0

wr µ̂r



Bayesian Variable selection (BVS)

I Model Selection
I Vector z = (z1, ..., z(K 1)) uniquely defines the model.
I Transformation G(z) = 1 +

∑K 1
i−1 zi2i−1 unique value for

each model.
I In each MCMC iteration we sample one vector

z = (z1, ..., zK 1) .
I Posterior mean of indicator G(z) = r + 1 translates into

posterior probability of the model gr
I For posterior probabilities holds:

P(G(z) = r + 1|data) = P(gr |data)



Order Restricted information Criteria

I In the case of order restricted hypothesis, the common
information criteria’s such as AIC, BIC, etc. is not suitable
for model selection

I ORIC (Anraku ,1999) take in to account monotonicity
induced in the mean structure

ORIC = −2logLOR(θ|data) +
K∑

l=1

lP(l , k ,w)

I Level Probability - P(l , k ,w)
I Express the probability of obtaining number l of distinct

means
I For example, for K = 4,P(1, k ,w) = 0.25,P(2, k ,w) =

0.46,P(3, k ,w) = 0.25,P(4, k ,w) = 0.04



Order Restricted information Criteria

I Model selection
I Approximation of Posterior Model probability

wr = PIC(gr |data) =
exp(− 1

2 ∆ORICr )∑R
s=1 exp(− 1

2 ∆ORICs)

where ∆ORICr = ORICr −ORICmin

I Model complexity: weighted sum of number of levels

EC =
K∑

l=1

lP(l , k ,w)

I For example, for K = 4,EC = 2.083
I It is the expected number of levels when isotonic regression

is used to estimate the means and the data are generated
under the null hypothesis



Application
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Further Topics

I Model Complexity
I Hypothesis Testing
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