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Mediation analysis

▶ Many scientific studies aim to infer if a given treatment or intervention
influences a given outcome.

T Y

▶ Increasingly, many studies are interested in disentangling the pathways that
link exposure to the outcome to get insight into the mechanism.
▶ Why/how does the treatment/intervention affect outcome?

T M Y
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Mediation analysis

T M Y

▶ Mediation analysis can be helpful in identifying
▶ the effect of the intervention that acts through a given set of intermediate

variables (indirect effect), and
▶ the effect of the intervention unexplained by those same intermediate

variables (direct effect).

▶ Question: How can we make inference about these causal effects from
experimental and observational studies?
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Motivating example — MUSICIAN trial

▶ The Managing Unexplained Symptoms (CWP) In Primary Care: Involving
Traditional and Accessible New Approaches – a 2 × 2 factorial randomized
controlled trial (McBeth et al., 2012)

▶ CBT was associated with substantial improvements in patient global
assessment.
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Research questions

▶ To what extent does the treatment improve health status by inducing a
change in fear of movement?

▶ To what extent the treatment improve health status independent of
changing fear of movement?
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Effect definition

CBT (Ti = 1) TAU (Ti = 0)

Fear of movement if CBT (Mi(1))
Fear of movement if TAU (Mi(0))
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CBT (Ti = 1) TAU (Ti = 0)

Fear of movement if CBT (Mi(1)) Yi(1, Mi(1))
Fear of movement if TAU (Mi(0)) Yi(1, Mi(0)) Yi(0, Mi(0))

Population Average Natural Indirect effect: E [Y (1, M(1))] − E [Y (1, M(0))]
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Identification of causal effects

To estimate natural direct and indirect effect we need:
▶ There are no unmeasured exposure-outcome confounder given Z
▶ There are no unmeasured mediator-outcome confounder given (T , Z)
▶ There are no unmeasured exposure-mediator confounder given T
▶ There are no mediator-outcome confounder affected by exposure

Z1 T M Y

Z2 Z3
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Identification of causal effects

Under the four identification assumptions, natural direct and indirect effects are
given by

E [Y (1, M(0)) − Y (0, M(0))] =∫ ∫
{E [Y | t = 1, m, z ] − E [Y | t = 0, m, z ]}dFM|t=1,z(m)dFZ (z)

E [Y (1, M(1)) − Y (1, M(0))] =∫ ∫
E [Y | t = 1, m, z ] {dFM|t=1,z(m) − dFM|t=0,z(m)}dFZ (z)
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Estimation

▶ Analytical integration (Valeri, L., and VanderWeele, T. J. (2013))
▶ Parametric regression model for Y and M and computing the integration

analytically
▶ SAS and SPSS macros available
▶ Frequentest approach

▶ Sampling (Imai et al., 2010)
▶ Proposed to use a broad class of parametric or semiparametric model for Y

and M
▶ Use simulations to calculate NIE and NDE and the standard errors for this

using bootstrap
▶ Popular R - package mediation
▶ Quasi-Bayesian approach
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Estimation

▶ We propose to use Bayesian framework for estimation of NIE and NDE.
▶ Why bayes?

▶ Full posterior inference for any function of model parameters, hence, point
and interval estimates can be easily constructed for causal risk ratios, odds
ratios, and risk differences

▶ Priors can help us compute causal effects under sparsity - avoid ad hoc
approaches

▶ Probabilistic sensitivity analysis
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Estimation — How it works?

▶ D = {Yi , Ti , Mi , Z i}
▶ Ti is a binary treatment assignment t ∈ {0, 1}
▶ Y is binary and M is continuous
▶ Assume IA (1) − IA (4) hold, the following regression models are correctly

specified
▶ logit(P(Yi = 1 | Ti , Mi , Z i)) = α0 + αZ Z i + αT Ti + αMMi ,
▶ E [Mi | Ti , Z i ] = β0 + βZ Z i + βT Ti

▶ θ = (α0, αZ , αT , αM , β0, βZ , βT )
▶ Appropriate prior is assumed for elements of θ.
▶ The model is fitted in stan.
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Estimation — How it works?

▶ Obtain bth set of posterior draws θ(b), b = 1, ..., B

▶ Bootstrap sampling to integrate out the confounder distribution:
▶ Sample n new values of Z with replacement from the observed Z distribution

and denote these resampled values as Z (1,b), . . . , Z (n,b)

▶ Draw the potential outcome values
▶ Potential values of M: M(t)(i,b) ∼ Normal(β(b)

0 + β
(b)
Z Z (i,b) + β

(b)
T t, σ(b))

▶ Given, the potential values of M, draw potential values of Y :
Y (t, M(t)(i,b))(i,b) ∼
Bernoulli(logit−1(α(b)

0 + α
(b)
Z Z (i,b) + α

(b)
T t + α

(b)
M M(t)(i,b)))

▶ Compute NIE and NDE
▶ NDE (b) = 1

n
∑n

i=1{Y (1, M(0)(i,b))(i,b) − Y (0, M(0)(i,b))(i,b)}
▶ NIE (b) = 1

n
∑n

i=1{Y (1, M(1)(i,b))(i,b) − Y (1, M(0)(i,b))(i,b)}
▶ Compute average and quartiles of NDE and NIE
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Application to MUSICIAN trial

▶ The Bayesian g-formula approach and the approach by Imai et al, 2010
(R-package mediation) leads to a comparable result.

▶ The effect of CBT on change in health status is mainly through
mechanisms other than fear of movement.

Estimand Imai et al. 2010 Bayesian g-formula

Direct effect 0.217 (0.107, 0.350) 0.224 (0.078, 0.369)
Indirect Effect 0.040 (-0.02, 0.100) 0.037 (-0.071, 0.142)
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Bayesian sensitivity analysis

▶ The identification assumptions are often too strong
▶ Need to assess the robustness of findings via sensitivity analysis
▶ Question: How large a departure from the key assumption must occur for

the conclusions to no longer hold?

Z T M Y

U



Bayesian Causal
Mediation Analysis

Belay B. Yimer,
Mark Lunt, John

McBeth

Background

Causal Mediation
Analysis

Bayesian g-formula

Application

Summary

Bayesian sensitivity analysis

▶ We follow the approach by McCandless et al, 2007

Y |T , M, Z ∼ Bernoulli(expit(α0 + αZ Z + αT T + αMM + αUU))
M|T , Z , σ ∼ Normal(β0 + βZ Z + βT T + βUU, σ2)

U|Z ∼ Bernoulli(expit(γ0 + γZ Z))

▶ We assign Uniform mean-zero bounded priors for the sensitivity parameters.

αU ∼ U(−δ, δ)
βU ∼ U(−δ, δ)
γZ ∼ U(−δ, δ)
γ0 ∼ U(−δ, δ)



Bayesian Causal
Mediation Analysis

Belay B. Yimer,
Mark Lunt, John

McBeth

Background

Causal Mediation
Analysis

Bayesian g-formula

Application

Summary

Bayesian sensitivity analysis



Bayesian Causal
Mediation Analysis

Belay B. Yimer,
Mark Lunt, John

McBeth

Background

Causal Mediation
Analysis

Bayesian g-formula

Application

Summary

Summary

▶ We have demonstrated the application of g-formula to Bayesian models for
conducting mediation analysis.

▶ We show a flexible Bayesian model to explore sensitivity to unmeasured
confounding in causal mediation analysis.

▶ Our goal is to make the methodology accessible to practitioners.
▶ The development version of the R-package, BayesGmed, are available at

https://github.com/belayb/BayesGmed.
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