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Preface

This textbook aims at providing the theory of statistical inference for students of statis-
tics at Masters level. Prerequisites for the book are calculus, linear algebra, and some
knowledge of basic probability.

Chapter 1 provides a quick overview of important concepts and results in distribution the-
ory that is used as tools in statistical inference. Chapter 2 studies the theory and methods
in point estimation under parametric models. Chapter 3 covers interval estimation and
confidence sets. The last chapter focuses on hypothesis testing. The classical frequentist
approach is adopted in this book, although the Bayesian approach is also introduced in
sections 2.4.2, 3.5, and 4.3.2.

Although this textbook focuses on the theory of statistical inference, it is often helpful to
apply principles and formulas to data to better explore and understand concepts and to
visualize results. There are many different software products available for data analysis.
Incorporating R into a statistical inference course can facilitate the instruction of many
concepts and principles typically covered in this course and allows for expansion to other
topics as well. In this material, we will present a few of the ways to use R to allow students
to connect, explore, visualize, and expand different concepts in statistical inference. R is a
free open-source program for statistical computing and graphics that can be downloaded.
R is a very powerful and flexible program that can run on Windows, Linux and Macintosh
computers. The commercial version of R is S-plus.

Prof. Noel Veraverbeke,Yilma Tefera, Legesse Negash, Zeytu Gashaw. and
Belay Birlie
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Chapter 1

Introduction

1.1 Parametric and nonparametric statistical inference

Statisticians want to learn as much as possible from a limited amount of data. A first
step is to set up an appropriate mathematical model for the process which generated the
data. Such a model has a probabilistic nature.

Suppose the statistician observes an outcome x of an experiment. This outcome is consid-
ered as a value of some random variable (or random vector) X. The distribution function F
of X is unknown to the statistician. Using some information about the way the experiment
runs, he is mostly able to say that F belongs to some specified family F of distribution
functions which are appropriate for his experiment. F is called the model. The statis-
tician would like to know the true F , i.e. that member of F that actually governs the
experiment.

� Sometimes each member of F can be specified by one single real parameter θ, or
more general, by a finite number of real parameters, i.e. a vector
θ∼ = (θ1, . . . , θk). In that case, the family F can be replaced by the set Θ of all

possible parameter values. The set Θ ⊂ IRk is called the parameter space. In
this case , the model F can be written as F = {Fθ|θ ∈ Θ} : a family of distribution
functions, indexed by θ. Such a situation is called a parametric situation. The
statistician wants to know the “true parameter”.

� In other cases, the members of F cannot be represented by a finite number of pa-
rameters. These situations are called nonparametric.

1
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Examples

1. An experiment has only two possible outcomes : S and F (Success and Failure).
Let X be the random variable

X =


0 . . . if F occurs

1 . . . if S occurs

Let θ denote the probability that S occurs.
Model : X ∼ B(1; θ) (Bernoulli, parameter θ)
Parameter space : Θ = ]0, 1[.

2. An experiment has k possible outcomes : O1, O2, . . . , Ok and is carried out indepen-
dently n times.
Let X∼ = (X1, . . . , Xk) be the random vector with Xj = the number of times that Oj
occurs, j = 1, . . . , k.
Let θj denote the probability that Oj occurs (j = 1, . . . , k)
Model : X∼ ∼M(n; (θ1, . . . , θk)) (multinomial)
Parameter space : Θ = {(θ1, . . . , θk)|θ1 ≥ 0, . . . , θk ≥ 0, θ1 + . . .+ θk = 1}

3. An experiment consists of measuring the value of a certain constant θ ∈ IR. Mea-
surements are subject to random error.
Let X be the random variable which describes the outcome of the experiment. A
parametric model could be :

X ∼ N(θ;σ2) (normal)

Parameter space : Θ = {(θ, σ2)|θ ∈ IR, σ > 0}.

4. A nonparametric model could be : X has a distribution function symmetric about
θ.

1.2 Some problems of statistical inference

Statistical inference deals with methods of using the outcomes to obtain information on
the “true distribution function” (or the “true parameter”) underlying the experiment.
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Approaches to statistical inference There are two broad approaches to formal sta-
tistical inference. Differences relate to interpretation of probability and objectives of sta-
tistical inference.

(i) Frequentist(or classical) approach. Inference from data founded on comparison
with datasets from hypothetical repetitions of the experiment generating data, under
exactly the same conditions. A central role is played by sufficiency, likelihood and
optimality criteria. Inference procedures are taken as decision problems rather than
as a summary of data. Optimum inference procedures identified before the data are
observed. Optimality defined explicitly in terms of the repeated sampling principle.

(ii) Bayesian approach. The unknown parameter θ treated as random variable. The
key in this method is that one has to specify a prior distribution about θ before
the data analysis. The specification is objective or subjective. Inference is a for-
malization of how the prior changes to the posterior in the light of data via Bayes’
formula.

In this material we will mainly focus on the frequentist approach. We will study methods
for obtaining estimation and testing procedures which satisfy certain optimality criteria.

The two most important topics in statistical inference are estimation and hypothesis
testing.

� Estimation. The observations are used to calculate an approximation (estimate)
for some numerical characteristic of the true distribution function (e.g. the mean,
the variance, . . . ) or, if the model F is parametric, the statistician wants to find a
numerical approximation for the true parameter.
The approximation can take the form of one numerical value (point estimation)
or the form of an interval or set of possible values (set estimation).

� Hypothesis testing. The observations are used to conclude whether or not the
true distribution belongs to some smaller family of distribution functions F0 ⊂ F.
In the parametric case, the statistician infers whether or not the true parameter
belongs to a subset Θ0 ⊂ Θ.

1.3 Random sample

A very common situation is the following : the statistician has available a number of
outcomes

x1, x2, . . . , xn

which are obtained by repeating the experiment “independently” a number of times.
These outcomes can be considered as values of random variables
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X1, X2, . . . , Xn

which are independent and have the same distribution as X.
We will often write

X1, X2, . . . , Xn
i.i.d.∼ X

and say : “X1, . . . , Xn are independent and identically distributed asX” or also: X1, . . . , Xn

is a random sample from X. Sometimes X is referred to as the population random
variable or as the population.

1.4 Statistics

Mostly the statistician does not use the observations x1, x2, . . . xn as such, but he tries to
condense them in some known function (not depending on any unknown parameters) such
as

t(x1, x2, . . . xn)

If the function t is such that t(X1, X2, . . . Xn) is a random variable, then

Tn = t(X1, X2, . . . Xn)

is called a statistic.

A k-dimensional statistic is a vector

T∼n = (Tn1, Tn2, . . . Tnk)

where, for j = 1, . . . k :
Tnj = tj(X1, . . . Xn)

is a (1-dimensional) statistic.

Important examples of statistics are

� the sample mean :

X =
1

n

n∑
i=1

Xi

� the sample variance :

S2 =
1

n

n∑
i=1

(Xi −X)2
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It will be important to calculate, for a given statistic Tn, characteristics such as: E(Tn), V ar(Tn), . . .
or the distribution function P (Tn ≤ x), . . . In the next section, we consider the distribu-
tion theory for X and S2 in the important case where the sample comes from a normally
distributed population random variable X.

1.5 Distribution theory for samples from a normal popula-
tion

In this section we give distribution theory for two important statistics X and S2 in sam-
pling from a normal population : i.e.

X1, . . . , Xn
i.i.d∼ X ∼ N(µ;σ2)

The reason is that these results play a crucial role in the whole theory of statistics. This
is because many populations are normal or can be well approximated by a normal. We
restrict attention to the two statistics X and S2. These will turn out to be the only two
of interest in sampling from a normal population (X and S2 are “sufficient” statistics).

A crucial fact in normal sampling theory is the following theorem.

Theorem 1

If X is normally distributed, then X and S2 are independent.

Proof

We prefer to give a proof only in the very special case n = 2. In this case

X =
1

2
(X1 +X2)

and

S2 =
1

2
[(X1 −X)2 + (X2 −X)2] =

1

4
(X1 −X2)2.

So X is a function of X1 +X2 and S2 is a function of X1 −X2. Hence it suffices to show
that X1 +X2 and X1−X2 are independent, or, equivalently that Y1 = X1 +X2− 2µ and
Y2 = X1 −X2 are independent. By simple calculation it follows :
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E[eit1Y1+it2Y2 ] = e−2it1µE[ei(t1+t2)X1ei(t1−t2)X2 ]

= e−2it1µE[ei(t1+t2)X1 ]E[ei(t1−t2)X2 ] = e−
1
2

(2σ2t21+2σ2t22)

From this joint characteristic function we see that (Y1, Y2) is 2-variate normal with mean

vector (0, 0) and variance-covariance matrix

 2σ2 0

0 2σ2

.

Hence Cov (Y1, Y2) = 0 and (because of normality) this is equivalent to independence of
Y1 and Y2. �

We are now able to derive the distribution of X and S2.

Theorem 2

If X ∼ N(µ;σ2), then

(a) X ∼ N(µ;
σ2

n
)

(b)
nS2

σ2
∼ χ2(n− 1)

Proof

(a) Since X =
1

n

n∑
i=1

Xi is a linear combination of X1, . . . , Xn, we have

X ∼ N(

n∑
i=1

1

n
µ;

n∑
i=1

1

n2
σ2) = N(µ;

σ2

n
)

(b)

nS2 =
n∑
i=1

(Xi −X)2 =
n∑
i=1

(Xi − µ+ µ−X)2

=

n∑
i=1

(Xi − µ)2 − 2(X − µ)

n∑
i=1

(Xi − µ) + n(X − µ)2

=

n∑
i=1

(Xi − µ)2 − n(X − µ)2
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nS2

σ2
=

n∑
i=1

(
Xi − µ
σ

)2

−

 X − µ√
σ2

n

2

or

nS2

σ2
+

 X − µ√
σ2

n

2

=
n∑
i=1

(
Xi − µ
σ

)2

U V W

For the characteristic functions of U, V,W we have

ϕW (t) = ϕU+V (t)

= ϕU (t).ϕV (t) ,since U and V are independent (Th.1).

Hence :

ϕU (t) =
ϕW (t)

ϕV (t)

=
(1− 2it)−n/2

(1− 2it)−1/2
, since W ∼ χ2(n) and V ∼ χ2(1)

= (1− 2it)−
n−1
2

By the uniqueness theorem U =
nS2

σ2
∼ χ2(n− 1). �

A further useful result is

Theorem 3

If X ∼ N(µ;σ2),then
X − µ√

S2

n− 1

∼ t(n− 1)

Proof

X − µ√
S2

n− 1

=

X− µ√
σ2/n√
nS2

σ2

n− 1

∼ t(n− 1), since
X − µ√
σ2/n

∼ N(0; 1);
nS2

σ2
∼ χ2(n− 1) ; and
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X − µ√
σ2/n

and
nS2

σ2
are independent (Th. 1). �



Chapter 2

Parametric Point Estimation

2.1 Problems of point estimation

Suppose that the population random variable X has a distribution function that depends
on one or more real unknown parameters.

Important remarks concerning notation :

(i) If we want to stress that the distribution function F (x) = P (X ≤ x) depends on
some parameter θ, then we will also write : Fθ(x), or F (x; θ) or Pθ(X ≤ x).

(ii) The term density function (or density) will be used for both continuous and
discrete random variables. Also the notation will be the same : f(x), or fθ(x) or
f(x; θ). Hence, in the continuous case f(x; θ) is a nonnegative integrable function

such that F (x; θ) =
x∫
−∞

f(t; θ)dt. In the discrete case : f(x; θ) = Pθ(X = x).

(iii) Expectations with respect to a density f(x; θ) will sometimes be denoted by Eθ.

(iv) The above remarks also apply if X and/or θ is a vector.

Point estimation of an unknown parameter θ is done in the following way :
the observed values x1, . . . , xn of a random sample X1, . . . , Xn are used to suggest an ap-
proximation for θ of the form t(x1, . . . , xn) where t is such that t(X1, . . . , Xn) is a statistic.

It is tradition to call the random variable

Tn = t(X1, . . . , Xn)

an estimator for θ
and a numerical value

9



10 CHAPTER 2. PARAMETRIC POINT ESTIMATION

t(x1, . . . , xn)

an estimate for θ.

If the unknown parameter is multidimensional, say θ∼= (θ1, . . . , θk), then an estimator for
θ∼ is a vector

T∼n = (Tn1, . . . , Tnk)

where, for j = 1, . . . , k : Tnj = tj(X1, . . . , Xn) is an estimator for θj .

Two problems immediately arise :

1. What are methods to construct estimators for a given parameter ?

2. How do we construct an estimator which is ’best’ in some sense ?

In this chapter we will discuss the maximum likelihood method and other methods for
constructing estimators. Their optimality properties will be examined.

We first introduce some general properties of estimators.

2.2 General properties of point estimators

2.2.1 Unbiasedness

Definition

An estimator Tn = t(X1, . . . , Xn) is said to be an unbiased estimator for θ if

Eθ(Tn) = θ

for all θ ∈ Θ.
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Example

Let X1, . . . , Xn be random sample from X.
Assume E(X) = µ and V ar(X) = σ2.
Then

(a) X is an unbiased estimator for µ.

(b)
n

n− 1
S2 =

1

n− 1

n∑
i=1

(Xi −X)2 is an unbiased estimator for σ2.

Proof

(a) E(X) = E

(
1

n

n∑
i=1

Xi

)
=

1

n
.n.E(X) = µ

(b) We have :

n

n− 1
S2 =

1

n− 1

n∑
i=1

(Xi − µ)2 − n

n− 1
(X − µ)2

Hence

E

(
n

n− 1
S2

)
=

n

n− 1
E[(X − µ)2]− n

n− 1
E[(X − µ)2]

=
n

n− 1
V ar(X)− n

n− 1
V ar(X)

=
n

n− 1
σ2 − n

n− 1

σ2

n

= σ2. �

Generalization to the multidimensional case is straightforward :

Definition

An estimator T∼n = (Tn1, . . . , Tnk) is an unbiased estimator for θ∼ = (θ1, . . . , θk) if for
j = 1, . . . , k :

E(Tnj) = θj

for all θ∼ ∈ Θ.
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Example

Let X∼ = (X1, . . . Xk) ∼M(n; (θ1, . . . , θk)).
Then the vector of relative frequencies(

X1

n
,
X2

n
, . . . ,

Xk

n

)
is an unbiased estimator for (θ1, . . . , θk).

Indeed : for j = 1, . . . , k

E

(
Xj

n

)
=

1

n
E(Xj) =

1

n
nθj = θj . �

If Tn is an estimator for θ, then the quantity

biasθ(Tn) = Eθ(Tn)− θ

is called the bias of Tn. With this definition : Tn is unbiased for θ iff biasθ(Tn) = 0 for
all θ ∈ Θ.
If only

lim
n→∞

biasθ(Tn) = 0 , for all θ ∈ Θ,

then we say that Tn is an asymptotically unbiased estimator for θ.

Example

S2 =
1

n

n∑
i=1

(Xi −X)2 is an asymptotically unbiased estimator for σ2 = V ar(X). Indeed :

bias(S2) = E(S2)− σ2

=

(
σ2 − σ2

n

)
− σ2 = −σ

2

n
→ 0, n→∞.

Remark: Bias arises due to systematic error and measures, on the average, how far away
and in what direction Eθ(Tn) is from the parameter θ.

Moreover, the property of unbiasedness by itself is not enough. We also need to have
a procedure to measure the precision of an estimator. An unbiased estimator with a
distribution highly concentrated near θ should be preferable to one with a distribution
that is very spread out. The precision of any estimator Tn (biased or unbiased) for θ is
measured by its mean square error (MSE) defined by

MSEθ(Tn) = Eθ[(Tn − θ)2].
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It is easy to check (Section 2.2.2) that

MSEθ(Tn) = V arθ(Tn) + (biasθ(Tn))2.

In particular, if biasθ(Tn) = 0, then Tn is unbiased for θ and MSEθ(Tn) = V arθ(Tn).
An estimator Tn for θ is preferable above an estimator T

′
n for θ if

MSEθ(Tn) ≤MSEθ(T
′
n),

for all θ ∈ Θ with strict inequality holding for at least one θ ∈ Θ. For unbiased estimators
Tn and T

′
n it simplifies to

V arθ(Tn) ≤ V arθ(T
′
n),

for all θ ∈ Θ with strict inequality for at least one θ ∈ Θ. If there exists an unbiased
estimator for θ which has the smallest variance among all unbiased estimators it is called
a uniformly minimum variance unbiased (UMVU) estimator for θ. We will discuss this
later.

Intuitively, if there are two unbiased estimators for θ the one based on sufficient statistic
should be preferable to the one that is not based on a sufficient statistic. It would appear
therefore that we need only concentrate on estimators based on sufficient statistics. We
will discuss this later.

2.2.2 Consistency

Suppose we wish to estimate a parameter θ by an estimator Tn = t(X1, X2, ..., Xn) based
on a sample of size n. If n is allowed to increase indefinitely, we are practically sampling
the whole population. In that case we should expect Tn to be practically equal to θ. That
is, if n → ∞ it would be desirable to have Tn converge to θ in some sense. We say that
a sequence of estimators Tn is a consistent sequence of estimators for θ if Tn converges in
probability to θ

Definition An estimator Tn = t(X1, . . . , Xn) is said to be a weakly consistent esti-
mator for θ if, for n→∞ :

Tn
P→ θ

for all θ ∈ Θ. where
P→ denotes convergence in probablity.
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Theorem If Tn is an estimator which is asymptotically unbiased for θ and such that

lim
n→∞

V arθ(Tn) = 0

for all θ ∈ Θ, then Tn is weakly consistent for θ.

Proof From Chebishev’s inequality : for every ε > 0 :

Pθ(|Tn − θ| ≥ ε) ≤ ε−2Eθ[(Tn − θ)2]

Now,

Eθ[(Tn − θ)2] = Eθ[(Tn − Eθ(Tn) + Eθ(Tn)− θ)2]

= V arθ(Tn) + (Eθ(Tn)− θ)2

= V arθ(Tn) + (biasθ(Tn))2 → 0, as n→∞.

Hence, for all ε > 0 :

Pθ(|Tn − θ)| ≥ ε)→ 0, for all θ ∈ Θ. �

Example Let X1, . . . , Xn be a random sample from X.

(a) if E|X| <∞, then
X is a weakly consistent estimator for µ = E(X).

(b) if E(X2) <∞, then
S2 is a weakly consistent estimator for σ2 = V ar(X).

Proof

(a) X =
1

n

n∑
i=1

Xi
P→ µ is true by the weak law of large numbers.

(b) S2 =
1

n

n∑
i=1

(Xi − µ)2 − (X − µ)2

By the weak law of large numbers :

1

n

n∑
i=1

(Xi − µ)2 P→ E(X − µ)2 = σ2
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(indeed : the random variables (Xi − µ)2 are i.i.d. and E(X − µ)2 <∞)

For the second term we have : X − µ P→ 0, and hence (X − µ)2 P→ 0.

By Slutsky’s theorem : S2 P→ σ2. �

Note
If MSEθ(Tn)→ 0 for all θ ∈ Θ, then Tn is weakly consistent.

The following facts are often useful and are stated without proof.

1. Let g be a continous function. If Tn
P→ θ then g(Tn)

P→ g(θ) as n→∞.

2. If Tn
P→ θ1 and T

′
n
P→ θ2 then:

(a) Tn ± T
′
n
P→ θ1 ± θ2.

(b) TnT
′
n
P→ θ1θ2

(c) Tn
T ′n

P→ θ1
θ2

(θ2 6= 0)

2.2.3 Efficiency

In statistics, efficiency is a term used in the comparision of various statistical procedures
and , in particular, it refers to a measure of the desirability of an estimator or of an ex-
perimental design. Efficiencies are often defined using the variance or mean square error
as the measure of desirability.
The efficiency of an unbiased estimator Tn is defined as

eff(Tn) =
1/i(θ)

V ar(Tn)

where i(θ) is the Fisher information of the sample. Thus eff(Tn) is the minimum possible
variance for an unbiased estimator divided by its actual variance. The Cramer-Rao bound
can be used to prove that (see section 2.4.1 about Fisher information and Cramer-Rao
bound):

eff(Tn) ≤ 1

V ar(Tn) ≥ 1

i(θ)

1 ≥ 1/i(θ)

V ar(Tn)
= eff(Tn)
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Efficient Estimator

If an unbiased estimator of a parameter θ attains eff(Tn) = 1 for all values of the
parameter, then the estimator is called efficient.

Equivalently, the estimator achieves equality in the Cramer-Rao inequality for all θ ∈ Θ.

An efficient estimator is also the uniformily minimum variance unbiased (UMVU) estima-
tor. This is because an efficient estimator maintains equality on the Cramer-Rao inequality
for all parameter values, which means it attains the minimum variance for all parameters
(the definition of the UMVU estimator). The UMVU estimator, even if it exists, is not
necessarily efficient, because ”minimum” does not mean equality holds on the Cramer-Rao
inequality.

Thus an efficient estimator need not exist, but if it does, it is the UMVU estimator.

Asymptotic efficiency

For some estimators, they can attain efficiency asymptotically and are thus called asymp-
totically efficient estimators. This can be the case for some maximum likelihood estimators
or for any estimators that attain equality of the Cramer-Rao bound asymptotically.

Relative efficiency

If Tn and T
′
n are estimators for the parameter θ, then Tn is said to dominate T

′
n if:

1. Its mean squared error (MSE) is smaller for at least some value of θ.

2. The MSE does not exceed that of T
′
n for any value of θ.

The relative efficiency is defined as

eff(Tn, T
′
n) =

E[(T
′
n − θ)2]

E[(Tn − θ)2]

Although efficiency is in general a function of θ, in many cases the dependence drops out;
if this is so, efficiency being greater than one would indicate that Tn is preferable, whatever
the true value of θ.

2.2.4 Asymptotically normal estimators

Definition

An estimator Tn for θ is said to be asymptotically normal if there exists a constant
σ(θ) > 0 such that, for n→∞ :
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n
1
2
Tn − θ
σ(θ)

d→ Z

with Z ∼ N(0; 1), for all θ ∈ Θ.

We will also write or say :

n
1
2
Tn − θ
σ(θ)

d→ N(0; 1)

or : n
1
2 (Tn − θ)

d→ N(0;σ2(θ))

or : Tn is approximately N

(
θ;
σ2(θ)

n

)
.

Example

Let X1, . . . , Xn be a random sample from X.
Assume E(X2) <∞. Call E(X) = µ, V ar(X) = σ2.
If σ2 > 0, then

n
1
2
X − µ
σ

d→ N(0; 1)

Example

Let X1, . . . , Xn be a random sample from X.
Assume E(X4) <∞. Call E(X) = µ, V ar(X) = σ2, and τ2 = E[(X − µ)4]− σ4.
If τ2 > 0, then

n
1
2
S2 − σ2

τ

d→ N(0; 1)

Proof

n
1
2
S2 − σ2

τ
=

1

τ
√
n

n∑
i=1

[(Xi − µ)2 − σ2]−
√
n

τ
(X − µ)2

For the first term we have by the central limit theorem
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1

τ
√
n

n∑
i=1

[(Xi − µ)2 − σ2]
d→ N(0; 1)

(indeed : the random variables are i.i.d., E(X − µ)2 = σ2 and V ar(X − µ)2 = E[(X −
µ)4]− σ4 = τ2 > 0)

For the second term we have

√
n

τ
(X − µ)2 =

σ

τ

[√
n
X − µ
σ

]
[X − µ]

P→ 0 ,

since
√
n
X − µ
σ

d→ Z and X − µ P→ 0.

By Slutsky’s theorem the result follows. �

The multi-dimensional extension is given by

Definition

An estimator T∼n = (Tn1, . . . , Tnk) for θ∼ = (θ1, . . . , θk) is said to be asymptotically
multivariate normal if there exists a symmetric positive definite matrix Σ(θ∼) such that,
for n→∞

n
1
2 (T∼n− θ∼)

= n
1
2 (Tn1 − θ1, . . . , Tnk − θk)

d→ Z∼

with Z∼ ∼ Nk(0∼; Σ(θ∼)), for all θ∼ ∈ Θ.

We will also write or say :

n
1
2 (T∼n− θ∼)

d→ Nk(0∼; Σ(θ∼))

or

T∼n is approximately Nk(θ∼;
1

n
Σ(θ∼)).
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Example

Let X∼ = (X1, . . . , Xk) ∼M(n; (θ1, . . . , θk)).
Then, the vector of relative frequencies

(
X1

n
, . . . ,

Xk

n

)

is asymptotically multivariate normal :

n
1
2

(
X1

n
− θ1, . . . ,

Xk

n
− θk

)
d→ Nk(0∼; Σ)

where Σ = [σij ]i,j=1,...,k and

σij =


θi(1− θi) . . . if i = j

−θiθj . . . if i 6= j

Proof

Define the random vectors

Y∼1 = (Y11, Y12, . . . , Y1k)

Y∼2 = (Y21, Y22, . . . , Y2k)

. . .

Y∼n = (Yn1, Yn2, . . . , Ynk)

where, for m = 1, . . . , n

Y∼m = (0, . . . , 0, 1, 0, . . . , 0)

j − th position

if outcome 0j occurs at the m-th trial.

We have : Y∼1, Y∼2, . . . , Y∼n are independent random vectors with the same distribution as
Y∼, with mean vector (θ1, . . . , θk) and covariance matrix

∑
= [σij ]i,j=1,...,k.
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Hence

n
1
2

(
X1

n
− θ1, . . . ,

Xk

n
− θk

)
=

1√
n

(X1 − nθ1, . . . , Xk − nθk)

=
1√
n

 n∑
j=1

Yj1 − nθ1, . . . ,

n∑
j=1

Yjk − nθk


d→ Nk(0∼; Σ), by the multivariate central limit theorem. �

2.2.5 Functions of asymptotically normal estimators

Univariate case

Theorem [Delta Method]

Suppose that Tn is an asymptotically normal estimator for θ :

n
1
2 (Tn − θ)

d→ N(0;σ2(θ)).

If g : IR→ IR : x 7→ g(x) is a function, differentiable at x = θ, with g′(θ) 6= 0,
then

n
1
2 (g(Tn)− g(θ))

d→ N(0; (g′(θ))2σ2(θ))

Proof

Define the function

h(x) =


0 . . . if x = θ

g(x)− g(θ)

x− θ
− g′(θ) . . . if x 6= θ

then

g(Tn)− g(θ) = (Tn − θ)g′(θ) + (Tn − θ)h(Tn)



2.2. GENERAL PROPERTIES OF POINT ESTIMATORS 21

or
n

1
2 (g(Tn)− g(θ))

g′(θ)σ(θ)
= n

1
2
Tn − θ
σ(θ)

+ n
1
2
Tn − θ
σ(θ)

h(Tn)
1

g′(θ)

The theorem will be proved if the term n
1
2
Tn − θ
σ(θ)

.h(Tn) tends to zero in probability.

But, n
1
2
Tn − θ
σ(θ)

d→ Z ∼ N(0; 1) and h(Tn)
P→ 0 since, by differentiability of g at θ, h is

continuous at θ. Apply Slutsky’s theorem. �

Example : sample standard deviation

Let X1, . . . , Xn be a random sample from X.
Assume E(X4) <∞. Call E(X) = µ, V ar(X) = σ2 and τ2 = E[(X − µ)4]− σ4.
If τ2 > 0, then

n
1
2
S − σ
λ

d→ N(0; 1)

where λ2 =
τ2

4σ2
=
E[(X − µ)4]− σ4

4σ2

Indeed : we know that n
1
2 (S2 − σ2)

d→ N(0; τ2).

Apply the theorem with g(x) =
√
x, i.e. g′(x) =

1

2
√
x

so that g′(σ2) =
1

2σ
.

Application : variance - stabilizing transformations In many cases, an estimator
Tn for θ is asymptotically normal, but the asymptotic variance depends on θ :

n
1
2 (Tn − θ)

d→ N(0;σ2(θ))

Therefore, it may be useful to find a variance-stabilizing transformation : i.e. a suitable
function g such that

n
1
2 (g(Tn)− g(θ))

d→ N(0; c2)

where c2 is now a constant, independent of θ.
From the theorem, we have to choose g such that

(g′(θ))2σ2(θ) = c2

i.e. g has to satisfy the differential equation :
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g′(θ) =
c

σ(θ)
.

Example : angular transformation

Let X1, . . . , Xn be a random sample from X ∼ B(1; θ) (Bernoulli with parameter θ). For

X = 1
n

n∑
i=1

Xi we have

n
1
2 (X − θ) d→ N(0; θ(1− θ)).

The differential equation for g becomes

g′(θ) =
c√

θ(1− θ)
.

Solving this equation for c =
1

2
gives : g(θ) = arcsin

√
θ.

Hence :

n
1
2

(
arcsin

√
X − arcsin

√
θ
)

d→ N(0;
1

4
).

Example : square root transformation

Let Tn be the Poisson with parameter θ.n, where θ > 0.
We have

n
1
2

(
Tn
n
− θ
)

d→ N(0; θ)

and

n
1
2

(√
Tn
n
−
√
θ

)
d→ N(0;

1

4
)

From this one often concludes : if X ∼ P (λ) with λ large, then
√
X is approximately

N(
√
λ;

1

4
).
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Multivariate extension

Theorem [Delta Method]

Suppose that T∼n = (Tn1, . . . , Tnk) is an asymptotically multivariate normal estimator for
θ∼= (θ1, . . . , θk) :

n
1
2 (T∼n− θ∼)

d→ Nk(0∼; Σ)

If g : IRk → IR : x∼ 7→ g(x∼) is a function whose partial derivatives
∂g

∂xi
(i = 1, . . . , k) are

continuous at θ∼ and not all zero at θ∼, then

n
1
2 (g(T∼n)− g(θ∼))

d→ N(0; ∆∼Σ∆∼
′)

where

∆∼=

(
∂g

∂x1

∣∣∣∣
x∼=θ∼

, . . . ,
∂g

∂xk

∣∣∣∣
x∼=θ∼

)
.

2.3 Uniformly Minimum Variance Unbiased estimators

2.3.1 Introduction

Measuring the closeness of an estimator Tn and the unknown parameter θ can be done by
the mean-squared error of Tn :

MSEθ(Tn) = Eθ[(Tn − θ)2].

It is then natural to look for an estimator for which the MSE is small. However, in general
it will be impossible to compare two estimators Tn and T ′n by comparing the two functions
MSEθ(Tn) and MSEθ(T

′
n). Indeed, the graphs of such functions are likely to cross.(for a

concrete understanding see problem 1 of section 2.8)
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q

MSE
q
 (T'n)

MSEq(Tn)

In this section we will look for estimators with uniformly minimum MSE within the
restricted class of unbiased estimators. If an estimator Tn is unbiased for θ, then

MSEθ(Tn) = V arθ(Tn)

for all θ ∈ Θ.

Definition

As estimator Tn = t(X1, . . . , Xn) is called an uniformly minimum variance unbiased
(UMVU) estimator for θ if

(i) Tn is an unbiased estimator for θ

(ii) For any other unbiased estimator T ′n of θ we have

V arθ(Tn) ≤ V arθ(T ′n) for all θ ∈ Θ.

In order to give a discussion on the existence and uniqueness of such estimator, we need
to introduce the concept of sufficiency.

2.3.2 Sufficient statistics

In making inference about an unknown parameter θ, the statistician makes a reduc-
tion of the data by using a statistic, i.e. a function t(X1, . . . , Xn) of the sample
X1, . . . , Xn. He compresses the n random variables X1, . . . , Xn into a single random
variable Tn = t(X1, . . . , Xn).

We will now formalize the intuitive idea that the statistic should be such that “no infor-
mation about θ is lost”. That is the function t(X1, . . . , Xn) of the sample should tell us
as much about θ as the sample X1, . . . , Xn itself.
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Example

Let X1, . . . , Xn be a random sample from X ∼ Bernoulli with parameter θ ∈ [0, 1].
Suppose x1, . . . , xn is a set of observations, i.e. a sequence of 0’s and 1’s. It is intuitively
clear that, in order to say something about θ(= Pθ(X = 1)), the only useful information

is the number of 1’s in the sequence (i.e.
n∑
i=1

xi).

Once we know the sum, it looks like if the information concerning the order of 0’s and 1’s
cannot help us any further. The sum carries all the information the sample has to give
about the unknown parameter θ.

This concept in statistics is called sufficiency and it has been introduced by Fisher.

LetX1, . . . , Xn be a random sample fromX. Suppose thatX has a (discrete or continuous)
density f(x; θ) , θ ∈ Θ ⊂ IR.

Definition

A statistic Tn = t(X1, . . . , Xn) is called sufficient for a parameter θ if the conditional
distribution of X1, . . . , Xn given Tn = c, does not depend on θ, for all values of c.

Note : In the above definition, θ can be a vector.
Thus, once the value of a sufficient statistic Tn is known, the sample X1, . . . , Xn does not
contain any further information about the parameter θ. Indeed, the distribution of the
sample, given the sufficient statistic, does not depend on θ (and hence cannot be used to
learn something about θ).
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Example
Consider a random sample of size three from B(1; θ). Let S =

∑3
i=1Xi and T =

∑3
i=2Xi.

Then, we will show that S is sufficient and T is not.

Output S T fX1,X2,X3 |S fX1,X2,X3 |T

(000) 0 0 1 (1− θ)

(001) 1 1 1/3 (1−θ)
2

(010) 1 1 1/3 (1−θ)
2

(100) 1 0 1/3 θ

(011) 2 2 1/3 (1− θ)

(101) 2 1 1/3 θ
2

(110) 2 1 1/3 θ
2

(111) 3 2 1 θ

Then one can see that the statistic S is sufficient as the conditional distribution of the
random sample given the statistic is free of θ, while the statistic T is not as the conditional
distribution depends on the parameter θ.
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Example

Let X1, . . . , Xn be a random sample from X ∼ B(1; θ). Tn =
n∑
i=1

Xi is a sufficient statistic

for θ :

P (X1 = x1, . . . , Xn = xn|
n∑
i=1

Xi = c)

=


P (X1 = x1, . . . , Xn = xn)

P

(
n∑
i=1

Xi = c

) . . . if
n∑
i=1

xi = c

0 . . . if otherwise

=



θc(1−θ)n−c
n

c

θc(1−θ)n−c
. . . if

n∑
i=1

xi = c (since
n∑
i=1

Xi ∼ B(n; θ))

0 . . . if otherwise

=



1 n

c


. . . if x1, . . . , xn = 0 or 1 with

n∑
i=1

xi = c

0 . . . if otherwise

which is independent of θ for all c.

Example

Let X1, . . . , Xn be a random sample from X ∼ Poisson, with parameter θ > 0.

Tn =
n∑
i=1

Xi is sufficient for θ :
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P (X1 = x1, . . . , Xn = xn|
n∑
i=1

Xi = c)

=


P (X1 = x1, . . . , Xn = xn)

P

(
n∑
i=1

Xi = c

) . . . if
n∑
i=1

xi = c

0 . . . if otherwise

=



e−nθθ

n∑
i=1

xi
/x1! . . . xn!

e−nθ(nθ)c/c!
. . . if

n∑
i=1

xi = c

(since
n∑
i=1

Xi ∼ P (nθ))

0 . . . if otherwise

=


c!

x1! . . . xn!nc
. . . if

n∑
i=1

xi = c

0 . . . if otherwise

which is independent of θ, for all c.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(θ;σ2) with σ2 known.

Tn =
n∑
i=1

Xi is sufficient for θ :

The conditional density function of X1, . . . , Xn given that
n∑
i=1

Xi = c is :
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(
1

σ
√

2π

)n
e

−
1

2σ2

n∑
i=1

(xi − θ)2

1
√
nσ
√

2π
e
−

1

2nσ2
(c− nθ)2

. . . if
n∑
i=1

xi = c

(since
n∑
i=1

Xi ∼ N(nθ;nσ2)

0 . . . if otherwise

=


√
n

σn−1(
√

2π)n−1
e

−
1

2nσ2

(
n

n∑
i=1

x2
i − c2

)
. . . if

n∑
i=1

xi = c

0 . . . if otherwise

which does not depend on θ.

For some problems it is impossible to find one single sufficient statistic.
However, there will always exist a set of jointly sufficient statistics (in the sense of the
following definition).

Definition

The r-dimensional statistic T∼n = (Tn1, . . . , Tnr) is called sufficient for a parameter θ
if the conditional distribution of X1, . . . , Xn given Tn1 = c1, . . . , Tnr = cr does not depend
on θ, for all values of c1, . . . , cr.

Notes :

1. We also say : the set of statistics Tn1, . . . , Tnr is jointly sufficient for θ.

2. θ can be a vector in the above definition.

3. There always exist two examples of trivial jointly sufficient statistics :

� The sample X1, . . . , Xn itself is always jointly sufficient.

� The ordered sample Xn:1, . . . , Xn:n (where Xn:1 ≤ Xn:2 ≤ . . . ≤ Xn:n are the
order statistics of the random sampleX1, . . . , Xn) is jointly sufficient : indeed,
for given c1, . . . , cn :
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P (X1 = x1, . . . , Xn = xn|Xn:1 = c1, . . . , Xn:n = cn)

=


1

n!
. . . if (x1, . . . , xn) is a permutation of (c1, . . . , cn)

0 . . . if otherwise

which is independent of θ.

2.3.3 Factorization theorem of Fisher and Neyman

Instead of checking sufficiency via the definition it is more convenient to make use of the
following theorem which gives a necessary and sufficient condition for a statistic to be
sufficient. It also has the advantage that we no longer have to guess what statistic is
sufficient.
The (a)-part of the theorem is for a one-dimensional statistic. The (b)-part deals with a
multidimensional statistic. In both parts, θ can be a vector.

Theorem [Factorization theorem of Fisher and Neyman]

(a) The statistic Tn = t(X1, . . . , Xn) is sufficient for θ if and only if

f(x1; θ)f(x2; θ) . . . f(xn; θ) = g(t(x1, . . . , xn); θ).h(x1, . . . , xn)

where g is a nonnegative function depending on θ and on x1, . . . , xn only through
t(x1, . . . , xn) and h is a nonnegative function, not depending on θ.

(b) The set of statistics Tn1 = t1(X1, . . . , Xn), . . . , Tnr = tr(X1, . . . , Xn) is jointly suffi-
cient for θ if and only if

f(x1; θ)f(x2; θ) . . . f(xn; θ) = g(t1(x1, . . . , xn), . . . tr(x1, . . . , xn); θ).h(x1, . . . , xn)

where g is a nonnegative function depending on θ and on x1, . . . , xn only through
t1(x1, . . . , xn), . . . , tr(x1, . . . , xn) and h is a nonnegative function not depending on
θ.

‘Proof’

We only give a proof of the (a)-part-in the discrete case–

� Suppose that Tn = t(X1, . . . , Xn) is sufficient for θ.
Then,

f(x1, θ)f(x2; θ) . . . f(xn; θ)

= P (X1 = x1, . . . , Xn = xn)

= P (X1 = x1, . . . , Xn = xn|Tn = c)P (Tn = c)
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The first factor is a function of x1, . . . , xn but does not depend on θ. The second
factor depends on θ and on t(x1, . . . , xn).

� Conversely, suppose that the factorization holds.
Then, Tn = t(X1, . . . , Xn) is sufficient, since

P (X1 = x1, . . . , Xn = xn|Tn = c)

= P (X1 = x1, . . . , Xn = xn|t(X1, . . . , Xn) = c)

=


P (X1 = x1, . . . , Xn = xn)

P (Tn = c)
. . . if t(x1, . . . , xn) = c

0 . . . if otherwise

=


P (X1 = x1, . . . , Xn = xn)∑

{t(y1,...,yn)=c}
P (X1 = y1, . . . , Xn = yn)

. . . if t(x1, . . . , xn) = c

0 . . . if otherwise

=


g(t(x1, . . . , xn); θ)h(x1, . . . , xn)∑

t(y1,...,yn)=c

g(t(y1, . . . , yn); θ)h(y1, . . . , yn)
. . . if t(x1, . . . , xn) = c

0 . . . if otherwise

=


h(x1, . . . , xn)∑

t(y1,...,yn)=c

h(y1, . . . , yn)
. . . if t(x1, . . . , xn) = c

0 . . . if otherwise

and this does not depend on θ.

Example

Let X1, . . . , Xn be a random sample from X ∼ B(1; θ), 0 < θ < 1.

f(x; θ) =


θx(1− θ)1−x . . . if x = 0, 1

0 . . . if otherwise

n∏
i=1

f(xi; θ) =


θ
∑
xi(1− θ)n−

∑
xi . . . if x1, . . . , xn = 0 or 1

0 . . . if otherwise

= g(
∑

xi; θ)h(x1, . . . , xn)
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where

g(
∑
xi; θ) = θ

∑
xi(1− θ)n−

∑
xi

h(x1, . . . , xn) =


1 . . . if x1, . . . , xn = 0 or 1

0 . . . if otherwise

Hence :
n∑
i=1

Xi is sufficient for θ.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with σ2 known.
Put θ = µ.

n∏
i=1

f(xi; θ) =

(
1

σ
√

2π

)n
e

−
1

2σ2

n∑
i=1

(xi − θ)2

= e

−
1

2σ2
[−2θ

n∑
i=1

xi + nθ2]
e

−
1

2σ2

n∑
i=1

x2
i

(σ
√

2π)n

= g

(
n∑
i=1

xi; θ

)
.h(x1, . . . , xn)

Hence :
n∑
i=1

Xi is sufficient for µ (if σ2 is known).

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ known.
Put θ = σ2.
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n∏
i=1

f(xi; θ) =
e

−
1

2θ

n∑
i=1

(xi − µ)2

(
√
θ
√

2π)n
· 1

= g

(
n∑
i=1

(xi − µ)2; θ

)
h(x1, . . . , xn)

Hence :
n∑
i=1

(Xi − µ)2 is sufficient for σ2 (if µ is known).

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ and σ2 both unknown.
Put θ∼= (θ1, θ2), θ1 = µ; θ2 = σ2.

n∏
i=1

f(xi; θ∼) =
e

−
1

2θ2

[
n∑
i=1

x2
i − 2θ1

n∑
i=1

xi + nθ2
1

]
(
√
θ2

√
2π)n

· 1

= g

(
n∑
i=1

xi,
n∑
i=1

x2
i ; θ∼

)
.h(x1, . . . , xn)

Hence :

(
n∑
i=1

Xi,
n∑
i=1

X2
i

)
is sufficient for (µ, σ2).

Example

Let X1, . . . , Xn be a random sample from X ∼ Un[θ1, θ2].
Then :

(i) if θ1 is known : max(X1, . . . , Xn) is sufficient for θ2

(ii) if θ2 is known : min(X1, . . . , Xn) is sufficient for θ1

(iii) if θ1, θ2 unknown : (min(X1, . . . , Xn), max(X1, . . . , Xn)) is sufficient for (θ1, θ2)
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We show (i).

n∏
i=1

f(xi; θ2) =


1

(θ2 − θ1)n
. . . if θ1 ≤ x1, . . . , xn ≤ θ2

0 . . . if otherwise

=


1

(θ2 − θ1)n
. . . if min(xi) ≥ θ1 and max(xi) ≤ θ2

0 . . . if otherwise

= g(max(xi); θ2).h(x1, . . . , xn)

with

g(max(xi); θ2) =


1

(θ2 − θ1)n
. . . if max(xi) ≤ θ2

0 . . . if otherwise

h(x1, . . . , xn) =


1 . . . if min(xi) ≥ θ1

0 . . . if otherwise

Example

Let X∼ = (X1, . . . , Xk) ∼M(n; (θ1, . . . , θk))

With x∼= (x1, . . . , xk) and θ∼= (θ1, . . . , θk), we have

f(x∼; θ∼) =


n!

x1! . . . xk!
θx11 . . . θxkk . . . if

k∑
i=1

xi = n

0 . . . if otherwise

Hence : (X1, . . . , Xk) is sufficient for (θ1, . . . , θk).
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The factorization theorem also immediately implies the following invariance properties.

Corollary

Let X1, . . . , Xn be a random sample from X with density f(x; θ) , θ ∈ Θ.
Let Tn = t(X1, . . . , Xn) be a sufficient statistic for θ.

a) If ϕ is a one-to-one function such that ϕ(Tn) is again a statistic, then ϕ(Tn) is a
sufficient statistic for θ.

b) If ψ is a one-to-one function, then Tn is a sufficient statistic for ψ(θ).

Proof

(a) Let T
∼
n = ϕ(Tn) = t

∼
(X1, . . . , Xn). Then Tn = ϕ−1(T

∼
n).

Hence,

n∏
i=1

f(xi; θ) = g(t(x1, . . . , xn); θ)h(x1, . . . , xn)

= g(ϕ−1(t
∼

(x1, . . . , xn)); θ)h(x1, . . . , xn)

= g
∼

(t
∼

(x1, . . . , xn); θ)h(x1, . . . , xn)

where g
∼

= g ◦ ϕ−1

or T
∼
n = t

∼
(X1, . . . , Xn) is a sufficient statistic for θ.

(b) Let θ∗ = ψ(θ). Then θ = ψ−1(θ∗).
Hence,

n∏
i=1

f(xi; θ
∗) = g(t(x1, . . . , xn); θ∗)h(x1, . . . , xn)

or Tn is sufficient for θ∗. �

Note : in the above θ and/or Tn may be multi-dimensional.

Another consequence of the factorization theorem is the following relation between ML-
estimators and sufficient statistics.
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Corollary

If Tn = t(X1, . . . , Xn) is a sufficient statistic for θ and if the ML-estimator for θ is unique,
then the ML-estimator is a function of Tn (i.e. the ML-estimator depends on X1, . . . , Xn

only through t(X1, . . . , Xn).

Proof

If t(X1, . . . , Xn) is a sufficient statistic for θ, then by the factorization theorem, we have
for the likelihood function L :

L(θ;x1, . . . , xn) = g(t(x1, . . . , xn); θ)h(x1, . . . , xn).

If there is a unique ML-estimator, then there is a unique value of θ that maximizes the
left hand side. Since h does not depend on θ, this value also maximizes g(t(x1, . . . , xn); θ).
But then it is seen that this value will depend on x1, . . . , xn only through the function
t(x1, . . . , xn). �

Notes

1. The result for the multiparameter case is similar.

2. The result can fail if the ML-estimator is not unique.

Example

Let X1, . . . , Xn be a random sample from X ∼ Un[θ − 1

2
, θ +

1

2
]

It is seen that T∼n = (min(Xi),max(Xi)) is a sufficient statistic for θ.

We also know that the ML-estimator is not unique : the class of ML-estimators is given
by

(1− c)
(

max(Xi)−
1

2

)
+ c

(
min(Xi) +

1

2

)
where 0 ≤ c ≤ 1.

It is possible to choose a ML-estimator which is not a function of T∼n alone : e.g.

sin2(X1)

(
max(Xi)−

1

2

)
+ cos2(X1)

(
min(Xi) +

1

2

)
.

Note
For a given parameter, there can be more than one set of sufficient statistics. E.g. for the
parameter θ∼= (θ1, θ2) in a N(θ1; θ2) density, we have
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� (X1, . . . , Xn) (the sample)

� (Xn:1, . . . , Xn:n) (the order statistics)

� (X,S2) (see before : one-to-one transformation of (
n∑
i=1

Xi,
n∑
i=1

X2
i ))

2.3.4 Minimal sufficient statistics

When we introduced the concept of sufficiency, we said that our objective was to condense
the data without losing any information about the parameter. We have seen that there
is more than one set of sufficient statistics. For example, in sampling from a normal
distribution with both the mean and variance unknown, we have noted three sets of
jointly sufficient statistics, namely, the sample X1, X2, ..., Xn itself, the order statistics
Y1, Y2, ..., Yn, and X and S2. We naturally prefer the jointly sufficient set X and S2 since
they condense the data more than either of the other two. The question that we might
ask is: Does there exist a set of sufficient statistics that condenses the data more than X
and S2? The answer is that there does not, but we will not develop the necessary tools
to establish this answer. The notion that we are alluding to is that of a minimum set of
sufficient statistics, which we label minimum sufficient statistics.

Definition A set of jointly sufficient statistics is defined to be minimal sufficient if and
only if it is a function of every other set of sufficient statistics. Like many other definition
, this definition is of little use in finding minimal sufficient statistics. If the joint density
is properly factored, the factorization criterion will give us minimal sufficient statistics.

2.3.5 Theorem of Rao and Blackwell

This theorem relates the notion of sufficient statistics to the notion of UMVU-estimators.
We will make use of “conditional expectation” i.e. expectation with respect to the
conditional distribution.

Theorem [Rao - Blackwell] Let Un be an unbiased estimator for θ.
Let Tn be a sufficient statistic for θ.
Put ϕ(t) = E[Un|Tn = t].
Then

(a) ϕ(t) does not depend on θ (hence : ϕ(Tn) is an estimator for θ).

(b) E[ϕ(Tn)] = θ (hence : ϕ(Tn) is an unbiased estimator for θ).

(c) V ar[ϕ(Tn)] ≤ V ar(Un) (hence : ϕ(Tn) has a variance which is not larger than that of
Un). And V ar[ϕ(Tn)] = V ar(Un) if and only if Un is essentially a function of Tn.
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Proof

(a)

ϕ(t)

= E[Un|Tn = t]

= E[u(X1, . . . , Xn)|Tn = t]

=


∑
x1

. . .
∑
xn

u(x1, . . . , xn)P (X1 = x1, . . . , Xn = xn|Tn = t) (discrete case)

∞∫
−∞

. . .
∞∫
−∞

u(x1, . . . , xn)fX1,...,Xn|Tn(x1, . . . , xn|t)dx1 . . . dxn (continuous case)

That this is independent of θ, follows from the definition of sufficiency.

To prove (b) and (c), we restrict to the continuous case.

(b) ϕ(t) =
∫
ufUn|Tn(u|t)du =

1

fTn(t)

∫
ufUn,Tn(u, t)du

Hence :

ϕ(t)fTn(t) =

∫
ufUn,Tn(u, t)du

E[ϕ(Tn)] =

∫
ϕ(t)fTn(t)dt

=

∫
[

∫
ufUn,Tn(u, t)dt]du

=

∫
ufUn(u)du = E(Un) = θ

(c)

V ar[Un] = E[(Un − θ)2]

= E[[(Un − ϕ(Tn)) + (ϕ(Tn)− θ)]2]

= E[(Un − ϕ(Tn)2] + E[(ϕ(Tn)− θ)2]

+2E[(Un − ϕ(Tn))(ϕ(Tn)− θ)]

The first term is ≥ 0, the second equals V ar[ϕ(Tn)] and the third term is zero (show
this).
Hence : V ar(Un) ≥ V ar[ϕ(Tn)].

Note
This theorem shows how to improve on an unbiased estimator Un by conditioning on a
sufficient statistic Tn. The new unbiased estimator is the UMVU-estimator provided the
sufficient statistic satisfies an additional property : completeness.
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2.3.6 Completeness

We define the notion of completeness for a general family of densities. let T be a (discrete
or continuous) random variable with corresponding family of densities {g(x; θ)|θ ∈ Θ}.

Definition
The family of densities {g(x; θ)|θ ∈ Θ} of T is complete if for every function u(x), not
depending on θ, it holds that :
Eθ[u(T )] = 0 , for all θ ∈ Θ
implies
Pθ[u(T ) = 0] = 1 , for all θ ∈ Θ.

Demonstrating completeness usually requires application of some theorem of analysis.

Example
Let T ∼ B(n; θ).
The family of densities is {g(x; θ)|0 < θ < 1}, where

g(x; θ) =



 n

x

 θx(1− θ)n−x . . . if x = 0, 1, . . . , n

0 . . . if otherwise

Eθ[u(T )] = 0 for all 0 < θ < 1

⇔
n∑
x=0

u(x)

 n

x

 θx(1− θ)n−x = 0 , for all 0 < θ < 1

⇒
n∑
x=0

u(x)

 n

x

 tx = 0 , for all 0 < t <∞
(
t =

θ

1− θ

)

Now, in order for a polynomial to be zero for all t > 0, we must have u(x)

 n

x

 = 0,

for all x = 0, 1, . . . , n. This implies u(x) = 0 for all x = 0, 1, . . . , n.

Hence : the family is complete.
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Example

Let T ∼ Un[0, θ].
The family of densities is {g(x; θ)|θ > 0}, where

g(x; θ) =


1

θ
. . . if 0 ≤ x ≤ θ

0 . . . if otherwise

Eθ[u(T )] = 0 , for all θ > 0

⇔
θ∫

0

u(x)
1

θ
dx = 0 , for all θ > 0

⇒
θ∫

0

u(x)dx = 0 , for all θ > 0

⇒ u(x) = 0 , for all x > 0

Hence : complete.

Example

Let T ∼ N(µ;σ2), with σ2 known.
Put θ = µ. Then the family is

 1

σ
√

2π
e
−

1

2σ2
(x− θ)2

|θ ∈ IR



Eθ[u(T )] = 0 , for all θ ∈ IR

⇔
∞∫
−∞

u(θ + σz)e
−

1

2
z2

dz = 0 , for all θ ∈ IR

⇒ u(x) = 0 , for all x ∈ IR (no proof)

Hence : complete family.
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Example

Let T ∼ N(µ;σ2), with µ known.
Put θ = σ2. Then the family is

 1√
θ
√

2π
e
−

1

2θ
(x− µ)2

|θ > 0


Eθ[u(T )] = 0 , for all θ > 0

⇔
∞∫
−∞

u(µ+
√
θz)e

−
1

2
z2

dz = 0 , for all θ > 0

This does not imply : u(x) = 0 for all x ∈ IR.
Take e.g. : u(x) = x− µ.
Hence : this family is not complete.

2.3.7 Theorem of Lehmann and Scheffé

We first combine the notions of sufficiency and completeness.

Definition

A statistic Tn is called a complete sufficient statistic for θ if

(i) Tn is a sufficient statistic for θ

(ii) The corresponding family of densities {g(x; θ)|θ ∈ Θ} of Tn is complete.

Theorem [Lehmann - Scheffé]

Let Tn be a complete sufficient statistic for θ.
Let ϕ be a function such that for all θ ∈ Θ :

Eθ[ϕ(Tn)] = θ and V arθ[ϕ(Tn)] <∞

Then

(a) ϕ(Tn) is unique

(b) ϕ(Tn) is an UMVU-estimator for θ
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Proof

(a) Suppose ψ is another function such that Eθ[ψ(Tn)] = θ.
Then, Eθ[ϕ(Tn)− ψ(Tn)] = 0 for all θ ∈ Θ, and hence
Pθ[ϕ(Tn) = ψ(Tn)] = 1.

(b) ϕ(Tn) is unbiased. Hence, it remains to show that for every unbiased estimator Un :

V arθ(ϕ(Tn)) ≤ V arθ(Un) , for all θ ∈ Θ

Let ψ(t) = Eθ[Un|Tn = t], then from Rao–Blackwell : Eθ[ψ(Tn)] = θ and V arθ[ψ(Tn)] ≤
V arθ(Un)
But, by (a) : Pθ[ϕ(Tn) = ψ(Tn)] = 1; hence : V arθ[ϕ(Tn)] ≤ V arθ(Un).

Example

Let X1, . . . , Xn be a random sample from X ∼ B(1; θ)
We know :

�
n∑
i=1

Xi is sufficient for θ

�
n∑
i=1

Xi ∼ B(n; θ), and this family is complete

� X =
1

n

n∑
i=1

Xi is unbiased estimator for θ

Hence : X is UMVU-estimator for θ.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with σ2 known.
We know :

�
n∑
i=1

Xi is sufficient for µ

�
n∑
i=1

Xi ∼ N(nµ;nσ2), and this family is complete

� X =
1

n

n∑
i=1

Xi is unbiased estimator for µ

Hence : X is UMVU-estimator for µ.
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Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ known.
We have :

�
n∑
i=1

(Xi − µ)2 is sufficient for σ2

�
n∑
i=1

(Xi − µ)2 = σ2.T , where T ∼ χ2(n)

This family is complete (no proof)

�
1

n

n∑
i=1

(Xi − µ)2 is unbiased estimator for σ2

Hence :
1

n

n∑
i=1

(Xi − µ)2 is UMVU-estimator for σ2.

2.3.8 The Exponential Class

There is a large class of densities for which there is a simple sufficient statistic (or set of
sufficient statistics). This is the so called exponential class (or Koopman-Darmois
class).

Definition

The density of a random variable X belongs to a one-parameter exponential class if
it is of the form

f(x; θ) = c(θ)eq(θ)t(x)h(x) , x ∈ IR

θ ∈ Θ ⊂ IR

where

c(θ) > 0 for all θ ∈ Θ

h(x) > 0 for all x ∈ S = {x|f(x; θ) > 0},
and where S is assumed to be independent of θ.
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Example
Let X ∼ B(n; θ) :

If we use the notation IA(x) =


1 . . . if x ∈ A

0 . . . if x 6∈ A
then, we can write

f(x; θ) =

 n

x

 θx(1− θ)n−xI{0,1,...,n}(x) , 0 < θ < 1

= (1− θ)n
(

θ

1− θ

)x  n

x

 I{0,1,...,n}(x)

which is the exponential type with

c(θ) = (1− θ)n, q(θ) = ln

(
θ

1− θ

)
, t(x) = x, h(x) =

 n

x

 I{0,1,...,n}(x).

Example

Let X ∼ N(θ;σ2), σ2 known :

f(x; θ) =
1

σ
√

2π
e
−
θ2

2σ2 e

θ

σ2
x
e
−

1

2σ2
x2

, θ ∈ IR

is of the exponential type with

c(θ) =
1

σ
√

2π
e
−
θ2

2σ2 , q(θ) =
θ

σ2
, t(x) = x, h(x) = e

−
1

2σ2
x2

.

Example

Let X ∼ N(µ; θ), µ known :

f(x; θ) =
1√
θ
√

2π
e
−

1

2θ
(x− µ)2

, θ > 0
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is of the exponential type with

c(θ) =
1√
θ
√

2π
, q(θ) =

−1

2θ
, t(x) = (x− µ)2, h(x) = 1.

Examples of densities which cannot be written in this form are

� f(x; θ) =
1

π

1

1 + (x− θ)2
x ∈ IR, θ ∈ IR (Cauchy)

� f(x; θ) =


e−(x−θ) . . . if x ≥ θ

0 . . . if x < θ

, θ ∈ IR (truncated exponential)

Properties

1. If X1, . . . , Xn is a random sample from X with density f(x; θ) of the form above,
then the joint density of X1, . . . , Xn is given by

n∏
i=1

f(xi; θ) = cn(θ)e
q(θ)

n∑
i=1

t(xi)
h(x1) . . . h(xn)

2. From the factorization theorem, it follows :

Tn =

n∑
i=1

t(Xi) is a sufficient statistic for θ.

3. In both discrete and continuous case one can show that the density of Tn has the
form

g(x; θ) = cn(θ)eq(θ)xh
∼

(x)

where h
∼

does not depend on θ.
(i.e. again the form of a one-parameter exponential family).
This is easy to see in the discrete case :
(but more difficult to prove in the continuous case)

g(x; θ) = P

(
n∑
i=1

t(Xi) = x

)

=

∗∑
P (X1 = x1, . . . , Xn = xn)

where the sum
∑∗ is over all (x1, . . . , xn) such that

n∑
i=1

t(xi) = x.

Thus

g(x; θ) =

∗∑
f(x1; θ) . . . f(xn; θ)

=

∗∑
cn(θ)e

q(θ)
n∑
j=1

t(xj)

h(x1) . . . h(xn)

= cn(θ)eq(θ)xh
∼

(x)
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where h
∼

(x) =
∑∗ h(x1) . . . h(xn).

4. One can also prove that the family of densities {g(x; θ)|θ ∈ Θ} is complete, provided
Θ contains an open interval. Hence, in this case :

Tn =

n∑
i=1

t(Xi) is a complete sufficient statistic for θ

There exist more general exponential classes. The following definition generalizes to an
r-dimensional parameter θ∼ = (θ1, . . . , θr) with r ≥ 1, and at the same time to random
vectors X∼ = (X1, . . . , Xk), with k ≥ 1.

Definition

The density of a random vector X∼ = (X1, . . . , Xk) belongs to an r-parameter exponen-
tial class if it is of the form

f(x∼; θ∼) = c(θ∼)e

r∑
i=1

qi(θ∼)ti(x∼)
h(x∼), x∼= (x1, . . . , xk) ∈ IRk

θ∼= (θ1, . . . , θr) ∈ Θ ⊂ IRr

where

c(θ∼) > 0 for all θ∼ ∈ Θ

h(x∼) > 0 for all x∼ ∈ S = {x∼|f(x∼; θ∼) > 0}, and where S is assumed to be independent of θ∼.

Example

Let X∼ = (X1, . . . , Xk) ∼M(n; (θ1, . . . , θk)) :
With x∼= (x1, . . . , xk), θ∼= (θ1, . . . , θk−1) :

f(x∼; θ∼) = (1− θ1 − . . .− θk−1)ne

k−1∑
i=1

xiln

(
θi

1− θ1 − . . .− θk−1

)
n!

x1! . . . xk!
IA(x∼)

where A = {x∼ = (x1, . . . , xk)|x1 ≥ 0, . . . , xk ≥ 0 ,
k∑
i=1

xi = n} is of the exponential type

with

c(θ∼) = (1− θ1 − . . .− θk−1)n, qi(θ∼) = ln

(
θi

1− θ1 − . . .− θk−1

)
(i = 1, . . . , k − 1)

ti(x∼) = xi (i = 1, . . . , k − 1), h(x∼) =
n!

x1! . . . xk!
IA(x∼).
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Example

Let X ∼ N(θ1; θ2) :

f(x; θ∼) =
1

√
θ2

√
2π
e
−
θ2

1

2θ2 e

θ1

θ2
x
e
−

1

2θ2
x2

, x ∈ IR

is of the exponential type with c(θ∼) =
1

√
θ2

√
2π
e
−
θ2

1

2θ2 , q1(θ∼) =
θ1

θ2
,

q2(θ∼) =
1

2θ2
, t1(x) = x, t2(x) = −x2, h(x) = 1.

The properties of the 1-parameter exponential class have their analogues in this multi-
parameter case.

2.4 General methods of point estimation

2.4.1 Maximum Likelihood Estimation

Introduction

The method of maximum likelihood is a routine procedure for obtaining estimators for
unknown parameters from a set of data

x1, x2, . . . , xn.

We assume that these data are the observed values of a random sample

X1, . . . , Xn
iid∼ X.

Assume that the distribution function of X depends on some unknown parameter θ ∈ Θ.
Let E be the event of observing x1, . . . , xn. The probability of E can be determined from
the model and, in general, it will depend on the unknown parameter θ. Denote it by
Pθ(E).
The maximum likelihood estimate for θ is a value of θ which maximizes Pθ(E) over Θ. It
is a parameter value which is “most likely” in the light of what has been observed.

If X is discrete (with density f(x; θ) = Pθ(X = x))then

Pθ(E) = Pθ(X1 = x1, . . . , Xn = xn)

=

n∏
i=1

Pθ(Xi = xi) =

n∏
i=1

f(xi; θ).
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If X is continuous (with density f(x; θ)) then P (X = x) = 0. Since always (with
F (x; θ) = Pθ(X ≤ x), the distribution function of X)

P (X = x) = F (x; θ)− lim
h→0
>

F (x− h; θ)

we have the approximation for h > 0, small

P (X = x) ≈ F (x; θ)− F (x− h; θ)

≈ f(x; θ)h

Since h does not depend on θ, we have (approximately) that maximization of Pθ(E) is
equivalent to maximizing

n∏
i=1

f(xi; θ)

Maximum Likelihood Estimation: One Parameter case

Let X1, . . . , Xn
iid∼ X. Suppose X has density f(x; θ) and that θ ∈ Θ ⊂ IR.

Definition

The likelihood function of X1, . . . , Xn is the function

L(θ, x∼) = L(θ;x1, . . . , xn) =

n∏
i=1

f(xi; θ)

Example

Let X be a Bernoulli distribution with parameter θ ∈ [0, 1].
Then : f(x; θ) = θx(1− θ)1−x (x = 0, 1)

and

L(θ;x∼) = θ

n∑
i=1

xi
(1− θ)

n−
n∑
i=1

xi
(all xi = 0, 1)
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Example

Let X be an exponential distribution with parameter θ ∈ ]0,∞[
Then : f(x; θ) = θe−θx (x > 0)

and

L(θ, x∼) = θne
−θ

n∑
i=1

xi
(all xi > 0)

Definition

A value θ
∧
n (where θ

∧
n is a function of the observations x1, . . . , xn; say θ

∧
n = t(x1, . . . , xn))

which maximizes the likelihood function L(θ;x1, . . . , xn) over all θ ∈ Θ is called a maxi-
mum likelihood estimate (ML-estimate) for θ.
Hence, for all θ ∈ Θ :

L(t(x1, . . . , xn);x1, . . . , xn) ≥ L(θ;x1, . . . , xn).

The random variable Tn = t(X1, . . . , Xn) is called a maximum likelihood estimator
(ML-estimator) for θ.

Remarks

1. From the examples we will see that a ML-estimator is not necessarily unique.

2. From the examples we will see that a ML-estimator is not necessarily unbiased.

3. In many cases, but not always, the maximum of L can be found by differentiation
methods.

4. Since L is a product, it is usually more convenient to maximize lnL (which is a sum
of terms). Since ln is monotone, any value of θ which maximizes L, also maximizes
lnL.

In the following, we will need more terminology.

Definition

The function
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l(θ;x∼) = l(θ;x1, . . . , xn) = lnL(θ;x1, . . . , xn)

is called the log likelihood function of X1, . . . , Xn.

Definition

The function

S(θ;x∼) = S(θ;x1, . . . , xn) =
∂

∂θ
l(θ;x∼)

is called the score function of X1, . . . , Xn.

Definition

The function

I(θ;x∼) = I(θ;x1, . . . , xn) = − ∂

∂θ
S(θ;x∼)

= − ∂2

∂θ2
l(θ;x∼)

is called the information function of X1, . . . , Xn.

Hence, in many cases, θ
∧
n can be found by solving the maximum likelihood equation :

S(θ;x∼) = 0

and by checking that

I(θ
∧
n;x∼) > 0.



2.4. GENERAL METHODS OF POINT ESTIMATION 51

L : likelihood function

l = ln L : log likelihood

function

: score function
ML-estimate

q
Ù
qn

S =       l
¶

¶ q

Example

Let X1, . . . , Xn be a random sample from X.
X be a Bernoulli distribution with parameter θ ∈ ]0, 1[.
Then :

l(θ;x∼) = (Σxi)lnθ + (n− Σxi)ln(1− θ)

S(θ;x∼) =
Σxi
θ
− n− Σxi

1− θ

I(θ;x∼) =
Σxi
θ2

+
n− Σxi
(1− θ)2

Solving S(θ;x∼) = 0 gives θ
∧
n =

1

n
Σxi and since I(θ

∧
n;x∼) > 0, we have that θ

∧
n =

1

n
Σxi is

the ML-estimate for θ and that Tn =
1

n

n∑
i=1

Xi = X is the ML-estimator for θ.

Example

Let X1, . . . , Xn be a random sample from X.
X be an exponential distribution with parameter θ ∈ ]0,∞[.
Then :
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l(θ;x∼) = nlnθ − θΣxi

S(θ;x∼) =
n

θ
− Σxi

I(θ;x∼) =
n

θ2
> 0

It follows that θ
∧
n =

n

Σxi
is the ML-estimate for θ and that Tn =

n
n∑
i=1

Xi

=
1

X
is the

ML-estimator for θ.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with σ2 known.
Put θ = µ. Then

l(θ;x∼) = −nln(σ
√

2π)− 1

2σ2

n∑
i=1

(xi − θ)2

S(θ;x∼) =
1

σ2

n∑
i=1

(xi − θ)

I(θ;x∼) =
n

σ2

It follows that the ML-estimator for µ is : X =
1

n

n∑
i=1

Xi.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ known.
Put θ = σ2. Then

l(θ;x∼) = −nln(
√

2π)− n

2
lnθ − 1

2θ

n∑
i=1

(xi − µ)2

S(θ;x∼) = − n

2θ
+

1

2θ2

n∑
i=1

(xi − µ)2

I(θ;x∼) =
−n
2θ2

+
1

θ3

n∑
i=1

(xi − µ)2

Solving S(θ;x∼) = 0 gives θ
∧
n =

1

n

n∑
i=1

(xi − µ)2 and since I(θ
∧
n;x∼) > 0 it follows that
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Tn =
1

n

n∑
i=1

(Xi − µ)2 is the ML-estimator for σ2.

Example

Let X1, . . . , Xn be a random sample from X ∼ Un[0, θ], θ > 0.
We have :

L(θ;x∼) =


(

1

θ

)n
. . . if 0 ≤ x1, . . . , xn ≤ θ

0 . . . if otherwise

The maximum cannot be found by differentiation. But L is maximized by choosing

θ as small as possible, i.e. θ
∧
n = max(xi). Hence the ML-estimator for θ is Tn =

max(X1, . . . , Xn).

Example

Let X1, . . . , Xn be a random sample from X ∼ Un[θ − 1

2
, θ +

1

2
], with θ ∈ IR (uniform

distribution with known range)
We have :

L(θ;x∼) =


1 . . . if θ − 1

2
≤ x1, . . . xn ≤ θ +

1

2

0 . . . if otherwise

So, L reaches its maximal value if

θ − 1

2
≤ x1, . . . , xn ≤ θ +

1

2

i.e. if θ − 1

2
≤ min(xi) and max(xi) ≤ θ +

1

2

or if max(xi)−
1

2
≤ θ ≤ min(xi) +

1

2

Hence, there is no unique ML-estimator. Each estimator of the form

Tn = (1− c)[max(Xi)−
1

2
] + c[min(Xi) +

1

2
]
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with 0 ≤ c ≤ 1 is ML-estimator for θ. A particular example is obtained for c =
1

2
: Tn =

1

2
[max(Xi) + min(Xi)].

Maximum Likelihood Estimation: Multi-Parameter case

In many cases we have a random sample X1, . . . , Xn from X with density f(x; θ1, . . . , θk)
depending on k real parameters. This means that we now have a density f(x; θ∼) with

θ∼= (θ1, . . . , θk) ∈ Θ ⊂ IRk, k ≥ 1.

The generalizations of the definitions to this multi-parameter case are :
The likelihood function :

L(θ∼;x∼) = L(θ1, . . . , θk;x1, . . . , xn) =
n∏
i=1

f(xi; θ∼)

The log likelihood function :

l(θ∼;x∼) = lnL(θ∼;x∼)

The score function : is now a k × 1 vector : score vector :

S(θ∼;x∼) = (S1(θ∼;x∼), . . . , Sk(θ∼, x∼))

=

(
∂

∂θ1
l(θ∼;x∼), . . . ,

∂

∂θk
l(θ∼;x∼)

)

The information function : is now a k × k matrix : information matrix :

I(θ∼;x∼) = (Iij(θ∼, x∼))i,j=1,...,k

=

(
− ∂2

∂θi∂θj
l(θ∼;x∼)

)
i,j=1,...,k

Maximum likelihood estimate for θ∼= (θ1, . . . , θk) : is now a vector θ
∧
∼n = (θ

∧
n1, . . . , θ

∧
nk)

where

θ
∧
n1 = t1(x1, . . . , xn)

. . .

θ
∧
nk = tk(x1, . . . , xn)
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are such that for all θ∼ ∈ Θ :

L(θ
∧
∼n;x∼) ≥ L(θ∼;x∼).

Maximum likelihood estimator for θ∼= (θ1, . . . , θk) : is the vector T∼n = (Tn1, . . . , Tnk)
where

Tn1 = t1(X1, . . . , Xn)

. . .

Tnk = tk(X1, . . . , Xn)

In certain cases : θ
∧
∼n = (θ

∧
n1, . . . , θ

∧
nk) is a solution of the k equations (maximum likeli-

hood equations) :



∂

∂θ1
L(θ∼;x∼) = 0

. . .

∂

∂θk
L(θ∼;x∼) = 0

or



∂

∂θ1
l(θ∼;x∼) = 0

. . .

∂

∂θk
l(θ∼;x∼) = 0

or



S1(θ∼;x∼) = 0

. . .

Sk(θ∼;x∼) = 0

The condition to have that θ
∧
∼n is a maximum is that the matrix I(θ

∧
∼n;X∼ ) is positive definite.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ and σ2 unknown. The
parameter θ∼= (θ1, θ2) with θ1 = µ, θ2 = σ2 is 2-dimensional :

θ∼ ∈ Θ = {(θ1, θ2)|θ1 ∈ IR, θ2 > 0} ⊂ IR2

We have

l(θ∼;x∼) = −nln
√

2π − n

2
lnθ2 −

1

2θ2

n∑
i=1

(xi − θ1)2



56 CHAPTER 2. PARAMETRIC POINT ESTIMATION

S(θ∼;x∼) =

(
1

θ2

n∑
i=1

(xi − θ1) , − n

2θ2
+

1

2θ2
2

n∑
i=1

(xi − θ1)2

)

I(θ∼;x∼) =


n

θ2

1

θ2
2

n∑
i=1

(xi − θ1)

1

θ2
2

n∑
i=1

(xi − θ1) − n

2θ2
2

+
1

θ3
2

n∑
i=1

(xi − θ1)2



The ML-equations :


∑

(xi − θ1) = 0

−n+
1

θ2

∑
(xi − θ1)2 = 0

have a solution θ
∧
∼n = (θ

∧
n1, θ
∧
n2) with


θ
∧
n1 =

1

n

n∑
i=1

xi = x

θ
∧
n2 =

1

n

n∑
i=1

(xi − x)2 = s2

and this is a maximum, since

I(θ
∧
∼n, x∼) =


n

s2
0

0
n

2s4

 is positive definite.

Hence, the ML estimator for (µ, σ2) is (X,S2) where X =
1

n

n∑
i=1

Xi and S2 =
1

n

n∑
i=1

(Xi −

X)2.

Example

Let X1, . . . , Xn be a random sample from X ∼ Un[θ1 − θ2, θ1 + θ2] with θ1 ∈ IR, θ2 > 0.
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L(θ1, θ2, x∼) =


(

1

2θ2

)n
. . . if θ1 − θ2 ≤ x1, . . . , xn ≤ θ1 + θ2

0 . . . if otherwise

=


(

1

2θ2

)n
. . . if θ2 ≥ θ1 −min(xi) and θ2 ≥ max(xi)− θ1

0 . . . if otherwise

=


(

1

2θ2

)n
. . . if (θ1, θ2) ∈ G (see figure below)

0 . . . if otherwise

G q2 = q1 - min(xi)

min(xi) max(xi)

q2 = max(xi) - q1

q1

q2

It is now clear that L is maximal when θ2 = θ1 −min(xi) = max(xi)− θ1, i.e.

θ1 =
1

2
[max(xi) + min(xi)] and θ2 =

1

2
[max(xi)−min(xi)].

Hence, the ML-estimator for (θ1, θ2) is (Tn1, Tn2), where Tn1 =
1

2
[max(Xi) + min(Xi)],

Tn2 =
1

2
[max(Xi)−min(Xi)].

Example

Let X∼ = (X1, . . . , Xk) ∼ M(n; (θ1, . . . , θk)). Here we have a single observation from a
multivariate discrete density.
For x∼= (x1, . . . , xk), x1 ≥ 0, . . . , xk ≥ 0, integers, such that x1 + . . .+ xk = n :
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P (X∼ = x∼) = P (X1 = x1, . . . , Xk = xk)

=
n!

x1! . . . xk!
θx11 θx22 . . . θxkk

=
n!

x1! . . . xk!
θx11 θx22 . . . θ

xk−1

k−1 (1− θ1 − . . .− θk−1)xk

≡ L(θ1, . . . , θk−1;x∼)

l(θ1, . . . , θk−1;x∼ ) = ln

(
n!

x1! . . . xk!

)
+ x1lnθ1 + . . .

. . .+ xk−1lnθk−1 + xkln(1− θ1 − . . .− θk−1).

S(θ1, . . . , θk−1;x∼) =

(
x1

θ1
− xk

1− θ1 − . . .− θk−1
, . . . ,

xk−1

θk−1
− xk

1− θ1 − . . .− θk−1

)

I(θ1, . . . , θk−1;x∼) =



x1

θ2
1

+
xk

(1− θ1 − . . .− θk−1)2

. . .

xk−1

θ2
k−1

+
xk

(1− θ1 − . . .− θk−1)2



all other entries are =
xk

(1− θ1 − . . .− θk−1)2

ML-equations : 

x1

θ1
− xk

1− θ1 − . . .− θk−1
= 0

. . .

xk−1

θk−1
− xk

1− θ1 − . . .− θk−1
= 0

Hence :

x1

θ1
=
x2

θ2
= . . . =

xk−1

θk−1
=

xk
1− θ1 − . . .− θk−1

=
x1 + . . .+ xk

1
= n

or
θ
∧
n1 =

x1

n
, . . . , θ

∧
n,k−1 =

xk−1

n
.
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This is a maximum, since

I(θ
∧
n1, . . . , θ

∧
n,k−1;x∼) =



n2

x1
+
n2

xk
. . .

n2

xk−1
+
n2

xk


all other entries =

n2

xk

is positive definite.
Conclusion : the ML-estimator for (θ1, . . . , θk) is

(
X1

n
,
X2

n
, . . . ,

Xk

n
).

Example

Suppose we have a random sample ofm observationsX∼1 = (X11, . . . , X1k), X∼2 = (X21, . . . , X2k), . . . , X∼m =
(Xm1, . . . , Xmk) from a multinomial distribution with parameters n and (θ1, . . . , θk).
Show that the ML-estimator for (θ1, . . . , θk) is

 m∑
i=1

Xi1

nm
, . . . ,

m∑
i=1

Xik

nm

 .

The Score Statistics

We defined the score function S(θ;x∼) in the 1-parameter case and the score vector S(θ∼;x∼)
in the k-parameter case. Recall

S(θ;x∼) = S(θ;x1, . . . , xn)

=
∂

∂θ
l(θ;x∼) =

∂

∂θ
lnL(θ;x∼) =

n∑
i=1

∂

∂θ
lnf(xi; θ)

S(θ∼;x∼) = S(θ∼;x1, . . . , xn)

= (S1(θ∼;x∼), . . . , Sk(θ∼;x∼))

= (
∂

∂θ1
l(θ∼;x∼), . . . ,

∂

∂θk
l(θ∼;x∼)).

Definition
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The random variable S(θ;X∼ ) = S(θ;X1, . . . , Xn) (or the random vector S(θ∼;X∼ ) =
S(θ∼;X1, . . . , Xn)) is called the score statistic.

(a) Mean and variance of the score statistic : one parameter case

Since the score statistic is a sum of i.i.d. random variables :

S(θ;X∼ ) =

n∑
i=1

∂

∂θ
lnf(Xi; θ)

we have :

E[S(θ;X∼ )] = nE[
∂

∂θ
lnf(X; θ)]

V ar[S(θ;X∼ )] = nV ar[
∂

∂θ
lnf(X; θ)]

Theorem

Under regularity conditions :

(i) E[
∂

∂θ
lnf(X; θ)] = 0

(ii) E[(
∂

∂θ
lnf(X; θ))2] = −E[

∂2

∂θ2
lnf(X; θ)]

‘Proof’

We sketch the proof for the case where X is discrete. (In the continuous case : replace all
sums by integrals)

(i) First note that
∂

∂θ
lnf(x; θ) =

∂

∂θ
f(x; θ)

f(x; θ)
and hence

∂

∂θ
lnf(x; θ).f(x; θ) =

∂

∂θ
f(x; θ)
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Now

E[
∂

∂θ
lnf(X; θ)] =

∑
x

∂

∂θ
lnf(x; θ).f(x; θ)

=
∑
x

∂

∂θ
f(x; θ)

=
∂

∂θ

∑
x

f(x; θ) (under regularity conditions)

=
∂

∂θ
(1) = 0.

(ii)

∂2

∂θ2
lnf(x; θ) =

f(x; θ)
∂2

∂θ2
f(x; θ)− (

∂

∂θ
f(x; θ))2

f2(x; θ)

=

∂2

∂θ2
f(x; θ)

f(x; θ)
− (

∂

∂θ
lnf(x; θ))2

Now

E[
∂2

∂θ2
lnf(X; θ)] =

∑
x

(
∂2

∂θ2
lnf(x; θ)).f(x; θ)

=
∑
x

∂2

∂θ2
f(x; θ)−

∑
x

(
∂

∂θ
lnf(x; θ))2.f(x; θ)

= −E[(
∂

∂θ
lnf(X; θ))2], since

∑
x

∂2

∂θ2
f(x; θ) =

∂

∂θ

∑
x

∂

∂θ
f(x; θ) (under regularity conditions)

=
∂

∂θ
(0) = 0. �

Note : as can be seen from the proof, the regularity conditions for the above result
are concerned with the possibility of interchanging differentiation and summation (or
integration).

Definition

The quantity
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i(θ) = E[(
∂

∂θ
lnf(X; θ))2]

is called the Fisher information number.

Corollary

Under regularity conditions :

E[S(θ;X∼ )] = 0

V ar[S(θ;X∼ )] = ni(θ) = E[I(θ;X∼ )]

Indeed :

I(θ;x∼) = − ∂2

∂θ2
l(θ;x∼) = −

n∑
i=1

∂2

∂θ2
lnf(xi; θ)

so that : E[I(θ;X∼ )] = −nE[
∂2

∂θ2
lnf(X; θ)] = ni(θ).

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with σ2 known.
Put θ = µ. Then :

∂

∂θ
lnf(x; θ) =

1

σ2
(x − θ); i(θ) =

1

σ4
E[(X − θ)2] =

1

σ2
;S(θ;X∼ ) =

1

σ2

n∑
i=1

(Xi − θ) =

n

σ2
(X − θ); hence : E(S(θ;X∼ )] = 0 and V ar[S(θ;X∼ )] =

n2

σ4
.
σ2

n
=

n

σ2
;

I(θ;X∼ ) =
n

σ2
;E[I(θ;X∼ )] =

n

σ2
.

(b) Mean vector and variance-covariance matrix of the score vector :
multi-parameter case

The analogue for the multi-parameter case of the Fisher information number is the Fisher
information matrix.

Definition

The k × k matrix
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B(θ∼) = (Bij(θ∼))i,j=1,...,k

=

(
E[

∂

∂θi
lnf(X; θ∼).

∂

∂θj
lnf(X; θ∼)]

)
i,j=1,...,k

is called the Fisher information matrix.
As before we have :

Theorem

Under regularity conditions :

(i) E[
∂

∂θi
lnf(X; θ∼)] = 0 for i = 1, . . . , k

(ii) E[
∂

∂θi
lnf(X; θ∼).

∂

∂θj
lnf(X; θ∼)]

= −E[
∂2

∂θi∂θj
lnf(X; θ∼)] for i, j = 1, . . . , k.

Corollary

Under regularity conditions :

� the mean vector of S(θ∼;X∼ ) is the zero vector

� the variance-covariance matrix of S(θ∼;X∼ ) is

nB(θ∼) =
(
E[Iij(θ∼;X∼ )]

)
i,j=1,...,k

.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ and σ2 unknown. Put
θ∼= (θ1, θ2), where θ1 = µ, θ2 = σ2.

∂

∂θ1
lnf(x; θ∼) =

1

θ2
(x− θ1)

∂

∂θ2
lnf(x; θ∼) = − 1

2θ2
+

1

2θ2
2

(x− θ1)2.

Calculate the Fisher information matrix :
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B(θ∼) =


1

θ2
0

0
1

2θ2
2


Compare with the expected values of the matrix I(θ∼;X∼ ) that has been calculated before.

Iterative procedures for calculation of ML-Estimates

It is not always possible to obtain a closed expression for the ML-estimate. We therefore
present some numerical procedures for solving ML-equations.

Let X1, . . . , Xn be a random sample from X ∼ Cauchy with parameter θ :

f(x; θ) =
1

π

1

1 + (x− θ)2

l(θ;x∼) = −nlnπ +
n∑
i=1

ln

(
1

1 + (xi − θ)2

)

S(θ;x∼) = 2
n∑
i=1

xi − θ
1 + (xi − θ)2

.

The ML-equation does not allow a solution in closed form. Numerical methods are neces-
sary.

(a) Solving the ML-equation by Newton’s method : one-parameter case Sup-

pose we have to find a solution θ
∧

of the ML-equation

S(θ;x∼ ) = 0

Let θ(0) be an initial guess, close to θ
∧

.
By Taylor series expansion :

S(θ;x∼) ≈ S(θ(0);x∼) + (θ − θ(0))(−I(θ(0);x∼))

That is : we approximate S(θ;x∼) by a linear function of θ which has the same value and

the same slope as S(θ;x∼) in θ = θ(0).
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q(1)q(0) q
q
^

S (q ; x)
~

Solving

S(θ(0);x∼) + (θ − θ(0))(−I(θ(0);x∼)) = 0

gives a solution θ(1) for θ :

θ(1) = θ(0) +
S(θ(0);x∼)

I(θ(0);x∼)

This solution θ(1) is taken as a new initial guess and the calculations are repeated. That
is : we obtain an iterative procedure given by

θ(i+1) = θ(i) +
S(θ(i);x∼)

I(θ(i);x∼)
i = 0, 1, 2, . . .

In this way we construct a sequence θ(0), θ(1), θ(2), . . .. We stop as soon as θ(i+1) ≈ θ(i), in
which case S(θ(i), x∼) ≈ 0, and a root has been found.

Modification: Fisher’s scoring method

A simplification is to use Eθ(i) [I(θ(i);X∼ )] instead of I(θ(i);X∼). From above it also follows

that in most cases this also equals ni(θ(i)).

The fully modified procedure then becomes
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θ(i+1) = θ(i) +
S(θ(i);X∼ )

ni(θ(i))
i = 0, 1, 2, . . .

Example

Let X1, . . . , Xn be a random sample from X ∼ Cauchy with parameter θ; i.e. f(x; θ) =
1

π

1

1 + (x− θ)2
.

A calculation shows :

i(θ) =
4

π

∞∫
−∞

t2

(1 + t2)3
dt =

1

2

which is independent of θ. In this case, the iterative procedure is simply

θ(i+1) = θ(i) +
2

n
S(θ(i);x∼) i = 0, 1, 2, . . .

(b) Solving the ML-equations by the Newton-Raphson method : multiparam-
eter case We illustrate the method for the 2-parameter case (k = 2). We need to find

a solution (θ
∧

1, θ
∧

2) of the simultaneous equations


S1(θ1, θ2;x∼) = 0

S2(θ1, θ2;x∼) = 0

Let (θ
(0)
1 , θ

(0)
2 ) be a preliminary guess and consider the linear approximations (by bivariate

Taylor expansions) :

S1(θ1, θ2;x∼) ≈ S1(θ
(0)
1 , θ

(0)
2 ;x∼) + (θ1 − θ(0)

1 )
∂S1

∂θ1
(θ

(0)
1 , θ

(0)
2 ;x∼) + (θ2 − θ(0)

2 )
∂S1

∂θ2
(θ

(0)
1 , θ

(0)
2 ;x∼)

S2(θ1, θ2;x∼) ≈ S2(θ
(0)
1 , θ

(0)
2 ;x∼) + (θ1 − θ(0)

1 )
∂S2

∂θ1
(θ

(0)
1 , θ

(0)
2 ;x∼) + (θ2 − θ(0)

2 )
∂S2

∂θ2
(θ

(0)
1 , θ

(0)
2 ;x∼)

Solving the system (with obvious abbreviations) :
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S1 + (θ1 − θ(0)

1 )
∂S1

∂θ1
+ (θ2 − θ(0)

2 )
∂S1

∂θ2
= 0

S2 + (θ1 − θ(0)
1 )

∂S2

∂θ1
+ (θ2 − θ(0)

2 )
∂S2

∂θ2
= 0

or :

(θ1 − θ(0)
1 θ2 − θ(0)

2 )


−∂S1

∂θ1
−∂S2

∂θ1

−∂S1

∂θ2
−∂S2

∂θ2

 = (S1 S2)

gives

(θ1 − θ(0)
1 θ2 − θ(0)

2 ) = (S1 S2)


−∂S1

∂θ1
−∂S2

∂θ1

−∂S1

∂θ2
−∂S2

∂θ2


−1

or :

(θ1 θ2) = (θ
(0)
1 θ

(0)
2 ) + (S1 S2)

 I11 I21

I12 I22


−1

where S1, S2, and the Iij have to be evaluated at (θ
(0)
1 , θ

(0)
2 ;x∼). This has to be applied

repeatedly until convergence is obtained.
The iterative procedure has the following form :

(θ
(i+1)
1 θ

(i+1)
2 ) = (θ

(i)
1 θ

(i)
2 ) + (S1 S2)

 I11 I21

I12 I22


−1

where the S1, S2 and the Iij on the right hand side have to be evaluated at (θ
(i)
1 , θ

(i)
2 ;x∼).

Modification: Fisher’s scoring method
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The analogous modification as in the 1-parameter case also applies here : one can replace
the Ijk(θ∼

(i);x∼) by Eθ∼
(i) [Ijk(θ∼

(i);X∼ )] (i.e. by nB(θ∼
(i)), in most cases).

The modified procedure then becomes:

θ∼
(i+1) = θ∼

(i) +
S(θ∼

(i);x∼)

n
B−1(θ∼

(i)) i = 0, 1, 2, . . .

(c) The Expectation-Maximization (EM) algorithm The EM algorithm is an it-
erative procedure for ML-estimation in problems with incomplete data. The term EM was
introduced by Dempster, Laird and Rubin (1977) and the algorithm is closely related to
the following old and simple iterative idea: (1) replace the missing data by estimated val-
ues; (2) estimate parameters; (3) reestimate the missing values assuming the parameters
are correct (4) reestimate the parameters, etc... until convergence. Hence each iteration
of the algorithm consists of two steps: the E step (expectation step) and the M step
(maximization step).
In the E step, the conditional expectations of the “missing data” are calculated, given the
observed data and the current parameter estimates. These expected values are substituted
for the “missing data”, to complete the set of observations. In the M step, maximum like-
lihood estimation is done using the completed set of observations.
(the quotes around “missing data” refer to the fact that the missing values themselves are
not necessarily being subsituted but rather missing sufficient statistics (certain functions
of the missing values)).
Suppose that x∼ = (x1, . . . , xn) denotes the complete data coming from a sample X∼ =
(X1, . . . , Xn). The random vector X∼ is not observed. Instead we observe a random vector
Y∼ (the incomplete data) that is the image of X∼ under some many-to-one transformation.

For example

� X∼= (X1, X2, X3, X4) with a multinomial distribution
Y∼= (X1, X2, X3 +X4) (collapsing of two cells)

� X∼= (X1, . . . , Xn) = (X∼
obs, X∼

mis)

(where X∼
obs and X∼

mis are the observed, resp. missing part of the sample.)

Y∼= X∼
obs

Let fX1,...,Xn(x1, . . . , xn; θ) = fX∼
(x∼; θ) denote the density of X∼ and let fY∼

(y∼; θ) denote the

density of Y∼. Since
fX∼

(x∼; θ) = fY∼
(y∼; θ)fX∼|Y∼

(x∼|y∼; θ)

we have for the log likelihood functions:

lX∼
(θ;x∼) = lY∼

(θ; y∼) + ln fX∼|Y∼
(x∼|y∼; θ)

or
lY∼

(θ; y∼) = lX∼
(θ;x∼)− ln fX∼|Y∼

(x∼|y∼; θ)

A natural estimator for θ is the maximizer θ̂ of the left hand side (the observed likelihood).
The first term of the right hand side is the complete-data log likelihood and the second
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term of the right hand side is the missing part of the complete-data log likelihood. It
cannot be calculated because X∼ is unobserved. Therefore we will take the conditional

expectation, given the observed data Y∼ and some preliminary estimate θ(j) of θ. Denote

Q(θ | θ(j)) =

∫
`X∼

(θ;x∼)fX∼|Y∼
(x∼ | y∼; θ

(j))dx∼

H(θ | θ(j)) =

∫
ln fX∼|Y∼

(x∼ | y∼; θ)fX∼|Y∼(x∼ | y∼; θ
(j))dx∼.

It then follows that

Q(θ | θ(j)) = `Y∼
(θ; y∼) +H(θ | θ(j))

It can be shown that, if θ(j+1) maximizes Q(θ | θ(j)), then `Y∼
(θ(j+1); y∼) ≥ `Y∼(θ(j); y∼). This

means that θ(j+1) is a better estimate than θ(j). This leads to the following algorithm
(EM algorithm):

Start with initial value θ(0). Let θ(j) be the estimate at iteration j. Then iteration (j + 1)
goes as follows:
E-step: Calculate the expected complete-data log likelihood Q(θ | θ(j)).
M-step: Find θ(j+1) as maximizer of Q(θ | θ(j)).

In well behaved cases, the EM algorithm produces a sequence θ(0), θ(1), . . . of estimates of
the parameter θ, that converges to θ̂, where θ̂ is the unique maximizer of the observed log
likelihood `Y∼

(θ; y∼).

Let us have a closer look at this in the important case where X∼ = (X1, . . . , Xn) is a
random sample from a density f(x; θ) of the “exponential family” form

f(x; θ) = eθt(x)−a(θ)+b(x)

where x ∈ <, θ ∈ Θ ⊂ <, t(x) > 0 for all x ∈ S = {x|f(x; θ) > 0} and where S does not
depend on θ.
The log likelihood function of X∼ is given by

lX∼
(θ;x∼) = θT (x∼)− na(θ) +B(x∼)

where T (x∼) =
n∑
i=1

t(xi) and B(x∼) =
n∑
i=1

b(xi).

For the E-step:

Q(θ | θ(j)) =

∫
[θT (x∼)− na(θ) +B(x∼)]fX∼|Y∼

(x∼ | y∼; θ
(j))dx∼

= θEθ(j) [T (X∼) | Y∼]− na(θ) +

∫
B(x∼)fX∼|Y∼

(x∼ | y∼; θ
(j))dx∼.

For the M-step:
Since the integral in the above expression does not involve θ, we have that maximization
of Q(θ | θ(j)) w.r.t. θ is the same as the maximization of `X∼

(θ;x∼), but where T (x∼) (th

sufficient statistic) has been replaced by Eθ(j) [T (X∼) | Y∼].
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Some interpretation
We generally have that

Eθ

(
∂

∂θ
lX∼

(θ;X∼

)
= 0and Eθ

(
∂

∂θ
ln fX∼|Y∼

(X∼|Y∼, θ)|Y∼

)
= 0.

This gives, in our situation,

Eθ(T (X)) = na′(θ)and
∂

∂θ
lY∼

(θ;Y∼) = Eθ[T (X∼)|Y∼]− na
′(θ)

and from these two equations it follows that

∂

∂θ
`Y∼

(θ;Y∼) = Eθ[T (X∼)|Y∼]− Eθ[T (X∼)].

Because
∂

∂θ
lY∼

(θ;Y∼) = 0 for θ = θ̂, we have

E
θ̂
[T (X∼)] = E

θ̂
[T (X∼)|Y∼].

Hence the solution θ̂ can be characterized as that value of the parameter under which the
conditional expectation of T (X∼) given Y∼ is the same as the unconditional expectation.

There is also an interpretation for the sequence of EM approximations θ(0), θ(1), . . .. If θ(j)

is the current estimate for θ, then the maximizer θ(j+1) of Q(θ | θ(j)) satisfies

Eθ(j) [T (X∼)|Y∼] = na′(θ(j+1)).

Since also

Eθ(j+1) [T (X∼)] = na′(θ(j+1))

we also have that

Eθ(j+1) [T (X∼)] = Eθ(j) [T (X∼)|Y∼].

To obtain a graphical interpretation, we now show that both Eθ(T (X∼)) and Eθ[T (X∼)|Y∼]
are increasing functions of θ and that the first increases more rapidly than the second.
Indeed, from above

∂

∂θ
Eθ(T (X∼)) = na′′(θ)

∂

∂θ
Eθ[T (X∼)|Y∼] = na′′(θ) +

∂2

∂θ2
lY (θ;Y∼).

To show that both expressions are positive, we recall that, in general:

Eθ

(
∂2

∂θ2
lX∼

(θ;X∼)

)
< 0

and

Eθ

(
∂2

∂θ2
ln fX∼|Y∼

(X∼|Y∼, θ)|Y∼

)
< 0.

This gives, in our situation,

na′′(θ) > 0
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and

na′′(θ) +
∂2

∂θ2
lY∼

(θ;Y∼) > 0.

Moreover, since
∂2

∂θ2
lY∼

(θ;Y∼) < 0 in some neighborhood of θ̂, we have that Eθ[T (X∼)] has

the largest slope.

This is graphically illustrated as follows:

E
q
[T(X)]

~

E
q
[T(X)  Y]

~ ~

q

q
(0)

q
(1)

q
(2)

q
^

We see that the sequence of EM approximations converges monotonically to θ̂.

The above method and properties of the EM algorithm also hold (under regularly con-
ditions on the likelihood function) outside the specific situation of exponential families.
Also the parameter θ may be multidimensional.
We do not present the theoretical properties on convergence of the EM algorithm, but
rather give some (simple) examples.

Example
Let X1, . . . , Xn be a random sample from X ∼ Exp(θ), θ > 0.

Suppose X1, . . . , Xm are observed
Xm+1, . . . , Xn are missing.

This is the simplest situation: in a random sample some units are missing. It is in fact
just a reduction in sample size from n to m.
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In our notation:

X∼ = (X1, . . . , Xn)

Y∼ = (X1, . . . , Xm)

lX∼
(θ;x∼) = −θ

n∑
i=1

xi + n ln θ

T (x∼) = −
n∑
i=1

xi

a(θ) = − ln θ.

We have

Eθ(T (X∼)) = −n
θ

and for i = m+ 1, . . . , n

Eθ(Xi|Y∼) = E(Xi|X1, . . . , Xm) = E(Xi) =
1

θ
.

Let θ(0) be some initial estimate for θ and θ(j)(j = 1, 2, . . .) estimates for θ at the successive
iterations.
At iteration j we have

Eθ(j) [T (X∼)|Y∼] = Eθ(j) [−
n∑
i=1

Xi|X1, . . . , Xm]

= −
m∑
i=1

Xi − (n−m)
1

θ(j)
.

Now recall that the ML-estimate for θ based on the complete data set is
n
n∑
i=1

xi

. Hence, at

iteration j + 1, the ML-estimate for θ is

θ(j+1) =
n

m∑
i=1

Xi + (n−m)
1

θ(j)

.

Note. Setting θ(j) = θ(j+1) = θ̂ we find that this iteration converges to

θ̂ =
m

m∑
i=1

Xi

which is the ML estimator for θ based on Y∼= X∼
obs.

The EM algorithm is unnecessary in this example since the ML-estimator is obtained ex-
plicitly.
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Example Let

X∼= (X1, X2, X3, X4) ∼M(n;
1

2
− θ

2
,
θ

4
,
θ

4
,
1

2
)) (0 ≤ θ ≤ 1)

Suppose we observe Y∼= (X1, X2, X3 +X4); say x1 = 38, x2 = 34, x3 + x4 = 125.

The complete-data log likelihood function is

l(θ;x) = ln

(
(x1 + x2 + x3 + x4)!

x1!x2!x3!x4!

)
+x1 ln

(
1

2
− θ

2

)
+x2 ln

(
θ

4
) + x3 ln

(
θ

4

)
+ x4 ln

(
1

2

)
.

Setting

S(θ;x∼) = − x1

1− θ
+
x2

θ
+
x3

θ
= 0 gives that the ML-estimate for θ for the complete data

set is given by

θ̂ =
x2 + x3

x1 + x2 + x3
.

Note that the essential part of log likelihood function is linear in x1, x2, x3, and x4.
We have

Eθ(X3 | Y∼) = Eθ(X3|X1 = 38, X2 = 34, X3 +X4 = 125) = 125

θ

4
1

2
+
θ

4

Eθ(X4 | Y∼) = Eθ(X4|X1 = 38, X2 = 34, X3 +X4 = 125) = 125

1

2
1

2
+
θ

4

.

If θ(0), θ(1), . . . are the successive estimates for θ, then at iteration j we have

Eθ(j)(X3|X1 = 38, X2 = 34, X3 +X4 = 125) =

125

(
θ(j)

4

)
1

2
+
θ(j)

4

Eθ(j)(X4|X1 = 38, X2 = 34, X3 +X4 = 125) =

125

(
1

2

)
1

2
+
θ(j)

4

.

At iteration j + 1:

θ(j+1) =

34 +

125

(
θ(j)

4

)
1

2
+
θ(j)

4

38 + 34 +

125

(
θ(j)

4

)
1

2
+
θ(j)

4

.
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Using this formula iteratively we obtain the ML-estimate for θ, based on the observed
likelihood.

For instance, starting with an initial estimate θ(0) =
1

2
, we obtain the following values:

θ(0) = 0.5

θ(1) = 0.608247423

θ(2) = 0.624321051

θ(3) = 0.626488879

θ(4) = 0.626777323

θ(5) = 0.626815632

θ(6) = 0.626820719

θ(7) = 0.626821395

. . .

Setting θ(j+1) = θ(j) = θ̂ in the iteration formula, we see that θ̂ satisfies

197θ̂2 − 15θ̂ − 68 = 0

The positive root of this quadratic equation is

θ̂ =
15 +

√
152 + 4(197)(68)

2(197)
= 0.6268215.

Note.
Inferences about θ can be based on the observed log likelihood l(θ;x∼

obs) only if the missing-
data mechanism leading to the incomplete data can be ignored. Such a missing-data
mechanism can be described by introducing indicator variables R∼= (R1, . . . , Rn) where

Ri =


1 if Xi is observed

0 if Xi is missing.

The more general model then specifies the joint distribution of X∼ = (X1, . . . , Xn) and
R∼= (R1, . . . , Rn)

fX∼,R∼
(x∼; r∼; θ, ψ) = fX∼

(x∼; θ)fR∼|X∼
(r∼|x∼;ψ).

The parameter ψ appears in the conditional distribution of R∼ given X∼. Sometimes this
distribtution is known, and ψ is unnecessary.
The actual observed data are (X∼

obs, R∼). So the likelihood function to work with is given

by (integrating out x∼
mis)

fX∼
obs,R∼

(x∼
obs, r∼; θ, ψ) =

∫
fX∼

obs,X∼
mis,R∼

(x∼
obs, x∼

misr∼; θ, ψ)dx∼
mis

=

∫
fX∼

obs,X∼
mis(x∼

obs, x∼
mis; θ)fR∼|X∼

obs,X∼
mis(r∼|x∼

obs, x∼
mis;ψ)dx∼

mis.
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The question is now under what conditions we can use the simple fX∼
obs(x∼

obs; θ) instead of

fX∼
obs,R∼

(x∼
obs, r∼; θ, ψ). (hence ignoring the missing-data mechanism).

The missing data are said to be missing at random (MAR) if

fR∼|X∼
obs,X∼

mis(r∼|x∼
obs, x∼

mis;ψ) = fR∼|X∼
obs(r∼|x∼

obs;ψ)

i.e. the distribution of the missing-data mechanism does not depend on the missing values
x∼
mis. In this case

fX∼
obs,R∼

(x∼
obs, r; θ;ψ) = fR∼|X∼

obs(r∼|x∼
obs;ψ)

∫
fX∼

obs,X∼
mis(x∼

obs, x∼
mis; θ)dx∼

mis

= fR∼|X∼
obs(r∼|x∼

obs;ψ)fX∼
obs(x∼

obs; θ)

In many cases the parameters θ and ψ are distinct and hence the likelihood fX∼
obs,R∼

(x∼
obs, r; θ, ψ)

and fX∼
obs(x∼

obs; θ) are proportional.

Large Sample properties of ML-Estimators

We now consider the limiting behaviour as the number n of observations tends to infinity.

(a) Weak consistency and asymptotic normality Under regularity conditions on
the family of densities {f(x; θ∼)|θ∼ ∈ Θ}, the ML-estimators are weakly consistent and
asymptotically normal. We do not state these regularity conditions, but, only give a short
idea of the proofs.
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One-parameter case

Theorem

Let X1, . . . , Xn be a random sample from X with density f(x; θ), θ ∈ Θ ⊂ IR. Under
regularity conditions, the ML-equation provides a ML-estimator Tn which satisfies, as
n→∞ :

(i) Tn
P→ θ

(ii) n
1
2 (Tn − θ)

d→ N(0;
1

i(θ)
)

where i(θ) is the Fisher information number.

(i.e. for large n : Tn is approximately N

(
θ;

1

ni(θ)

)
).

‘Proof’

Tn = t(X1, . . . , Xn) and θ
∧
n = t(x1, . . . , xn) satisfies S(θ

∧
n;x∼ ) = 0.

Taylor expansion around θ gives :

0 = S(θ
∧
n;x∼) ≈ S(θ;x∼) + (θ

∧
n − θ)(−I(θ;x∼))

or:

Tn − θ ≈
S(θ;X∼)

I(θ;X∼)

To prove (i), we write

Tn − θ ≈

1

n
S(θ;X∼)

1

n
I(θ;X∼)

=

1

n

n∑
i=1

∂

∂θ
lnf(Xi; θ)

1

n

n∑
i=1

(
− ∂2

∂θ2
lnf(Xi; θ)

)
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Application of the weak law of large numbers for sums of i.i.d. random variables, gives,
as n→∞ :

1

n

n∑
i=1

∂

∂θ
lnf(Xi; θ)

P→ E

[
∂

∂θ
lnf(X; θ)

]
= 0

1

n

n∑
i=1

(
− ∂2

∂θ2
lnf(Xi; θ)

)
P→ E

[
− ∂2

∂θ2
lnf(X; θ)

]
= i(θ)

and hence, as n→∞ : Tn − θ
P→ 0.

To prove (ii), we write

n
1
2 (Tn − θ) ≈

1√
n
S(θ;X∼)

1

n
I(θ;X∼)

=

1√
n

n∑
i=1

∂

∂θ
lnf(Xi; θ)

1

n

n∑
i=1

(
− ∂2

∂θ2
lnf(Xi; θ)

)

As before, we have for the denominator, by the law of large numbers :

1

n

n∑
i=1

(
− ∂2

∂θ2
lnf(Xi; θ)

)
P→ i(θ).

The numerator is a properly normalized sum of i.i.d. random variables with mean

E

[
∂

∂θ
lnf(X; θ)

]
= 0

and variance

E

[(
∂

∂θ
lnf(X; θ)

)2
]

= i(θ)

Hence, by the central limit theorem for sums of i.i.d. random variables :

1√
n

n∑
i=1

∂

∂θ
lnf(Xi; θ)

d→ N(0; i(θ))
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Hence, by Slutsky’s theorem :

n
1
2 (Tn − θ)

d→ N

(
0;

1

i(θ)

)
.

�

Multiparameter case

The previous theorem generalizes to the multi-parameter case (in which θ∼ is a vector).
The basic tools in the previous proof (Taylor’s theorem, central limit theorem, law of
large numbers) all have their multivariate version.

Theorem

Let X1, . . . , Xn be a random sample from X with density f(x; θ∼), θ∼ = (θ1, . . . , θk) ∈
Θ ⊂ IRk. Under regularity conditions, the ML-equations provide a ML-estimator T∼n =
(Tn1, . . . , Tnk) which satisfies, as n→∞ :

(i) T∼n
P→ θ∼

(ii) n
1
2 (Tn1 − θ1, . . . , Tnk − θk)

d→ Nk(0∼;B
−1(θ∼)) where B(θ∼) is the Fisher information

matrix.

(i.e. for large n : T∼n is approximately Nk(θ∼;
1

n
B−1(θ∼))).

(b) Asymptotic efficiency of ML-estimators Under regularity conditions we ob-
tained that the limiting distribution of the ML-estimator is normal around θ∼ and with

variance 1/ni(θ) (in the 1-parameter case) or
1

n
B−1(θ∼) (in the multi-parameter case).

These expressions are the lower bounds in the Cramer-Rao inequality (or informa-
tion inequality). The fact that the variance of the limiting normal distribution of the
ML-estimator achieves this lower bound is usually expressed as : the ML-estimator is
asymptotically efficient (or B.A.N. : best asymptotically normal). To see this con-
nection, we recall the Cramer-Rao inequality :
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One-parameter case

Theorem [Cramer-Rao inequality]
Let X1, . . . , Xn be a random sample from X with density f(x; θ), θ ∈ Θ ⊂ IR.
Let Tn be any unbiased estimator for θ.
Then, under regularity conditions,

V arθ(Tn) ≥ 1

ni(θ)
, for all θ ∈ Θ

where i(θ) is the Fisher information number.

‘Proof’

We sketch the proof for the case where X is continuous. (In the discrete case : replace
integrals by sums)
Since the estimator Tn = t(X1, . . . , Xn) is unbiased for θ, we have

θ =

∫
. . .

∫
t(x1, . . . , xn)

n∏
i=1

f(xi; θ)dx1 . . . dxn

or

θ =

∫
. . .

∫
t(x∼)L(θ;x∼)dx1 . . . dxn

Differentiation with respect to θ gives (under regularity conditions) :

1 =

∫
. . .

∫
t(x∼)

∂

∂θ
L(θ;x∼)dx1 . . . dxn

or

1 =

∫
. . .

∫
t(x∼)S(θ;x∼)L(θ;x∼)dx1 . . . dxn
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or

1 = Eθ[Tn.S(θ;X∼ )]

or

1 = Covθ[Tn, S(θ;X∼ )]

(since, under regularity conditions, we have E[S(θ;X∼ )] = 0 – see before –)

By the Cauchy-Schwarz inequality

1 ≤ V arθ(Tn).V arθ(S(θ;X∼ ))

= V arθ(Tn).(ni(θ))

(under regularity conditions – see before –)

Hence : V arθ(Tn) ≥ 1

ni(θ)
. �

Multi-parameter case

The Cramer-Rao inequality for the variance generalizes to the multi-parameter case. The

next theorem states that, in a certain sense, the matrix
1

n
B−1(θ∼) is a “lower bound” for

the variance-covariance matrix of an unbiased estimator for θ∼.

Theorem [information inequality]

Let X1, . . . , Xn be a random sample from X with density f(x; θ∼), θ∼ = (θ1, . . . , θk) ∈ Θ ⊂
IRk.
Let T∼n = (Tn1, . . . , Tnk) be any unbiased estimator for θ∼ = (θ1, . . . , θk). Denote by
V arθ∼

(T∼n) the variance-covariance matrix of T∼n.

Then, under regularity conditions,

V arθ∼
(T∼n)− 1

n
B−1(θ∼) is positive semidefinite for all θ∼ ∈ Θ,

where B(θ∼) is the Fisher information matrix.
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‘Proof’

Since T∼n = (Tn1, . . . Tnk) is unbiased for θ∼, we have that for each i = 1, . . . , k :
Tni = ti(X1, . . . , Xn) is unbiased for θi, or

∫
. . .

∫
ti(x∼)L(θ∼;x∼)dx1 . . . dxn = θi

By differentiation : for all i, j = 1, . . . , k :

∫
. . .

∫
ti(x∼)

∂

∂θj
L(θ∼;x∼)dx1 . . . dxn = δij =


0 . . . if i 6= j

1 . . . if i = j

or

∫
. . .

∫
ti(x∼)Sj(θ∼;x∼)L(θ∼;x∼)dx1 . . . , dxn = δij

where Sj(θ∼;x∼) is the j-th component of the score vector. Hence : Cov(Tni, Sj(θ∼;X∼ )) = δij .
Consider the variance-covariance matrix of the vector (Tn1, . . . Tnk, S1(θ∼;X∼ ), . . . , Sk(θ∼, X∼ ));
it can be written as the following partitioned matrix :



V arθ∼
(T∼n) I

I nB(θ∼)


Because this is a variance-covariance matrix, it is positive semidefinite.
It follows that

[
I − 1

n
B−1(θ∼)

]

V arθ∼

(T∼n) I

I nB(θ∼)




I

− 1

n
B−1(θ∼)
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is also positive semidefinite.

But this last matrix is just V arθ∼
(T∼n)− 1

n
B−1(θ∼). �

Example
Let X1, . . . , Xn be a random sample from X ∼ Poisson (θ), where θ > 0.

f(x; θ) = e−θ
θx

x!

lnf(x; θ) = −lnx!− θ + xlnθ

∂

∂θ
lnf(x; θ) =

x− θ
θ

i(θ) =
1

θ2
E[(X − θ)2] =

1

θ2
V ar(X) =

θ

θ2
=

1

θ
.

The Cramer-Rao bound is
θ

n
.

Note that X is an unbiased estimator which reaches the Cramer-Rao bound : E(X) = θ

and V ar(X) =
θ

n
.

Example

Let X1, . . . , Xn be a random sample form X ∼ Bernoulli with parameter θ, θ < θ < 1.
Calculation shows that

i(θ) =
1

θ(1− θ)

and hence the Cramer-Rao bound is

θ(1− θ)
n

Check that X is an unbiased estimator for θ which reaches the Cramer-Rao bound:

V ar(X) =
θ(1− θ)

n
.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with σ2 known.
Put θ = µ.

Check that i(θ) =
1

σ2
.
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Hence the Cramer-Rao bound is
σ2

n
.

This bound is attained by the unbiased estimator X.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ known.
Put θ = σ2.

Check that i(θ) =
1

2θ2
.

Hence the Cramer-Rao bound is
2θ2

n
.

Check that the unbiased estimator
1

n

n∑
i=1

(Xi − µ)2 attains this bound.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2) with µ and σ2 unknown.
Put θ∼= (θ1, θ2) with θ1 = µ, θ2 = σ2.

We have

B(θ∼) =



1

θ2
0

0
1

2θ2
2



which has inverse :

B−1(θ∼) =


θ2 0

0 2θ2
2

 .

The “lower bound matrix” for the variance-covariance matrix of any unbiased estimator
(Tn1, Tn2) for (θ1, θ2) is
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θ2

n
0

0
2θ2

2

n


so that,

if E(Tn1) = θ1, then V ar(Tn1) ≥ θ2

n

if E(Tn2) = θ2, then V ar(Tn2) ≥ 2θ2
2

n
.

Example

Let X∼ = (X1, X2, X3) ∼M(n; (θ1, θ2, θ3)) (Trinomial distribution)
Since θ3 = 1− θ2 − θ3, we have in fact a 2-dimensional parameter θ∼= (θ1, θ2).
With x∼= (x1, x2, x3), we have

f(x∼; θ∼) =
n!

x1!x2!x3!
θx11 θx22 (1− θ1 − θ2)x3

lnf(x∼; θ∼) = ln

(
n!

x1!x2!x3!

)
+ x1lnθ1 + x2lnθ2 + x3ln(1− θ1 − θ2)

∂

∂θ1
lnf(x∼; θ∼) =

x1

θ1
− x3

1− θ1 − θ2

∂

∂θ2
lnf(x∼; θ∼) =

x2

θ2
− x3

1− θ1 − θ2

∂2

∂θ2
1

lnf(x∼; θ∼) = −x1

θ2
1

− x3

(1− θ1 − θ2)2

∂2

∂θ2
2

lnf(x∼; θ∼) = −x2

θ2
2

− x3

(1− θ1 − θ2)2

∂2

∂θ1∂θ2
lnf(x∼; θ∼) = − x3

(1− θ1 − θ2)2

Now E(X1) = nθ1 , E(X2) = nθ2 , E(X3) = n(1− θ1 − θ2)
This leads to :

B(θ∼) =


n

θ1
+

n

1− θ1 − θ2

n

1− θ1 − θ2

n

1− θ1 − θ2

n

θ2
+

n

1− θ1 − θ2
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and hence

B−1(θ∼) =


θ1(1− θ1)

n

−θ1θ2

n

−θ1θ2

n

θ2(1− θ2)

n

 .

The “lower bound matrix” for the variance-covariance matrix of any unbiased estimators
for θ1 and θ2 is 

θ1(1− θ1)

n

−θ1θ2

n

−θ1θ2

n

θ2(1− θ2)

n


One may verify that this lower bound is attained by the variance-covariance matrix of the

obvious unbiased estimators for θ1 and θ2 :
X1

n
and

X2

n
.

Example

For the general multinomial distributionM(n; (θ1, . . . , θk)), we have, with θ∼= (θ1, . . . , θk−1)
:
Fisher information matrix

B(θ∼) = n

(
δij
θi

+
1

1− θ1 − θ2 − . . .− θk−1

)
i,j=1,...,k−1

and for its inverse :

B−1(θ∼) =
1

n
(δijθi − θiθj)i,j=1,...,k−1 .
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2.4.2 Minimax and Bayes Estimation

Decision function. Loss function. Risk function

Suppose we have a random sample from X with density f(x; θ) where θ ∈ Θ ⊂ IR is an
unknown parameter.

It is convenient to borrow some language from decision theory.

1. An estimate for θ, i.e. a function δ(x1, . . . , xn) of the observations is often called a
decision.
The function : δ : IRn → IR is called a decision function.

2. If θ is estimated by δ(x1, . . . , xn), then the error is called the loss and a measure for
the error is called a loss function , i.e. a nonnegative function of θ and δ(x1, . . . , xn)
:

l(θ; δ(x1, . . . , xn))

Examples

� l(θ; δ(x1, . . . , xn)) = |θ − δ(x1, . . . , xn)| : Absolute error loss

� l(θ; δ(x1, . . . , xn)) = (θ − δ(x1, . . . , xn))2 : Squared error loss

3. Suppose a certain loss function has been chosen. We want to choose an estimate for
θ, i.e. a decision function δ(x1, . . . , xn) such that the average loss is small. The
average loss is called the risk function. It is a function R of θ and δ(x1, . . . , xn)

R(θ; δ)

= Eθ[l(θ; δ(X1, . . . , Xn))]

=


∑
x1

. . .
∑
xn

l(θ; δ(x1, . . . , xn))
n∏
i=1

f(xi; θ) (discrete case)

∞∫
−∞

. . .
∞∫
−∞

l(θ; δ(x1, . . . , xn))
n∏
i=1

f(xi; θ)dx1 . . . dxn (continuous case)

Note
For the squared error loss function, the corresponding risk function is the mean-
squared error (MSE).

4. In trying to compare 2 estimators, say δ(X1, . . . , Xn) and δ′(X1, . . . , Xn) via their
risk functions R(θ; δ) and R(θ; δ′), we usually find that comparison is impossible
since the risk functions, as functions of θ, cross :
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R (q ; d)

R (q ; d')

q

Minimax estimators

A first way to overcome the difficulty of finding an estimator which minimizes the risk
function uniformly in θ, is to look for an estimator which minimizes the worst that could
occur, i.e. which minimizes the maximum (over θ) risk.

So two estimators δ(X1, . . . , Xn) and δ′(X1, . . . , Xn) for θ can be compared by comparing
two numbers:

sup
θ∈Θ

R(θ; δ) and sup
θ∈Θ

R(θ; δ′).

Definition

A minimax estimator for θ is defined to be the estimator δ(X1, . . . , Xn) for which

sup
θ∈Θ

R(θ; δ) ≤ sup
θ∈Θ

R(θ; δ′)

for any other estimator δ′(X1, . . . , Xn) for θ.

A method for finding a minimax estimator will be given at the end of the next section.

Bayes estimators

A second way to overcome the difficulty of comparing risk functions, is to average out
R(θ; δ) over θ. This leads to the so called Bayes estimators.

Essential in the Bayesian approach is to view the parameter θ as a value of some random

variable Θ
∼

with a known distribution (rather than viewing θ as an unknown constant).
This completely specified (discrete or continuous) density over the parameter space Θ is
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called the prior density. The choice of the prior density reflects past experience about
the parameter θ. It expresses the degree of belief in different values of the parameter,
before the observations are made.

The averaging out of R(θ; δ) over the parameter space Θ will be done using the density of

Θ
∼

(= the prior density) as weight function.
Let π(θ)(θ ∈ Θ) be the prior density.

The Bayes risk R(δ) is defined by

R(δ) =


∑
Θ

R(θ; δ)π(θ) . . . if π is discrete

∫
Θ

R(θ; δ)π(θ)dθ . . . if π is continuous

This gives us a way to compare two estimators δ(X1, . . . , Xn) and δ′(X1, . . . , Xn): we will
compare two numbers, nl. their Bayes risks

R(δ) and R(δ′).

Definition

The Bayes estimator for θ with respect to the loss function l and the prior density π is
defined to be the estimator δ(X1, . . . , Xn) for which

R(δ) ≤ R(δ′)

for any other estimator δ′(X1, . . . , Xn) for θ.

For squared error loss, finding the Bayes estimator is easy :

Theorem

The Bayes estimator for θ with respect to the squared eroor loss function and the prior
density π is given by δ(X1, . . . , Xn), where
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δ(x1, . . . , xn) =



∑
Θ

θ

[
n∏
i=1

f(xi; θ)

]
π(θ)∑

Θ

[
∏n
i=1 f(xi; θ)]π(θ)

. . . if π is discrete

∫
Θ

θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

∫
Θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

. . . if π is continuous

Proof

We give the proof for the case that the prior density π is of the continuous type. For the
case of a discrete type prior density : replace all integrals by sums.
We have

R(δ) =

∫
Θ

R(θ; δ)π(θ)dθ

=

∫
Θ

[∫
. . .

∫
(θ − δ(x1, . . . , xn))2

[
n∏
i=1

f(xi; θ)

]
dx1 . . . dxn

]
π(θ)dθ

=

∫
. . .

∫ ∫
Θ

(θ − δ(x1, . . . , xn))2

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

 dx1 . . . dxn.

R(δ) will be minimized if the integrand

I ≡
∫
Θ

(θ − δ(x1, . . . , xn))2

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

is minimized for all (x1, . . . , xn). But :

I =

∫
Θ

θ2

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

−2δ(x1, . . . , xn)

∫
Θ

θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

+δ2(x1, . . . , xn)

∫
Θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ
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and this is minimized for

δ(x1, . . . , xn) =

∫
Θ

θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

∫
Θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

.

�

Interpretation

The quantity

[
n∏
i=1

f(xi; θ)

]
π(θ)

∑
Θ

[
n∏
i=1

f(xi; θ)

]
π(θ)

(in the discrete case) or

[
n∏
i=1

f(xi; θ)

]
π(θ)

∫
Θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

(in

the continuous case) is a density as a function of θ, with x1, . . . , xn fixed. It is called the

posterior density of Θ
∼

. It is the conditional density of Θ
∼

, given that X1 = x1, . . . , Xn =
xn :

f
θ
∼
|X1,...,Xn

(θ|x1, . . . , xn).

Indeed, (in the discrete case) :

f
Θ
∼
|X1,...,Xn

(θ|x1, . . . , xn)

= P [Θ
∼

= θ|X1 = x1, . . . , Xn = xn]

=
P [X1 = x1, . . . , Xn = xn|Θ

∼
= θ]P [Θ

∼
= θ]∑

Θ

P (X1 = x1, . . . Xn = xn|Θ
∼

= θ]P [Θ
∼

= θ]

(by Bayes rule)

=

[
n∏
i=1

f(xi; θ)

]
π(θ)

∑
Θ

[
n∏
i=1

f(xi; θ)

]
π(θ)

.

Thus, we have :
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The Bayes estimator for θ with respect to the squared error loss function and the
prior π is given by δ(X1, . . . , Xn), where

δ(x1, . . . , xn) =


∑
Θ

θf
Θ
∼
|X1,...,Xn

(θ|x1, . . . , xn)

∫
Θ

θf
Θ
∼
|X1,...,Xn

(θ|x1, . . . , xn)dθ

= E[Θ
∼
|X1 = x1, . . . , Xn = xn]

= the mean of the posterior distribution.

This corresponds to the well known fact that, for a random variable X with E(X2) <∞ :
E[(X − a)2] is minimum when a = E(X).

Note
The same interpretation holds for Bayes estimators with respect to other loss functions.
E.g. for absolute error loss, the Bayes estimator will be given by a median of the
posterior distribution. This corresponds to the fact that, for a random variable X with
E|X| <∞ : E|X − a| is minimum when a is any median of X.

Example

Let X1, . . . , Xn be a random sample from X ∼ B(1; θ) with 0 < θ < 1.

Prior density : Θ
∼
∼ Beta(α;β), i.e.

π(θ) =


Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 . . . if 0 < θ < 1

0 . . . if otherwise

�

(1) =

1∫
0

θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

=
Γ(α+ β)

Γ(α)Γ(β)

1∫
0

θ.θ
∑
xi(1− θ)n−

∑
xiθα−1(1− θ)β−1dθ

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+
∑
xi + 1)Γ(β + n−

∑
xi)

Γ(α+ β + n+ 1)
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�

(2) =

1∫
0

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+
∑
xi)Γ(β + n−

∑
xi)

Γ(α+ β + n)

� δ(x1, . . . , xn) =
(1)

(2)
=

∑
xi + α

n+ α+ β

Bayes estimator for θ :

n∑
i=1

Xi + α

n+ α+ β
Special case : If α = β = 1, then the Beta(α;β) becomes the Un[0, 1]-prior density and
the Bayes estimator is

n∑
i=1

Xi + 1

n+ 2
.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(θ;σ2) with σ2 known; θ ∈ IR.

Prior density : Θ
∼
∼ N(µ0;σ2

0), with µ0 and σ2
0 known.

�

(1) =

∞∫
−∞

θ

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

=

(
1

σ
√

2π

)n 1

σ0

√
2π

∞∫
−∞

θe
−

1

2σ2

∑
(xi − θ)2 − 1

2σ2
0

(θ − µ0)2

dθ

Now algebraic manipulations give∑
(xi − θ)2

σ2
+

(θ − µ0)2

σ2
0

= C +
σ2 + nσ2

0

σ2σ2
0

(
θ − σ2µ0 + σ2

0nx

σ2 + σ2
0n

)2

where C does not depend on θ.
Hence :

(1) = C ′.

∞∫
−∞

θe
−

1

2

σ2 + nσ2
0

σ2σ2
0

(
θ − σ2µ0 + σ2

0nx

σ2 + σ2
0n

)2

dθ

where C ′ does not depend on θ.
And similarly, with the same C ′ :
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�

(2) =

∞∫
−∞

[
n∏
i=1

f(xi; θ)

]
π(θ)dθ

= C ′
∞∫
−∞

e
−

1

2

σ2 + nσ2
0

σ2σ2
0

(
θ − σ2µ0 + σ2

0nx

σ2 + σ2
0n

)2

dθ

Hence :

δ(x1, . . . , xn) =
(1)

(2)
=
σ2µ0 + σ2

0nx

σ2 + σ2
0n

Bayes estimator for θ :
σ2µ0 + σ2

0nX

σ2 + σ2
0n

.

Notes :

� The Bayes estimator is a weighted average of the ML-estimator X and the prior
mean µ0

� The Bayes estimator gets closer to the ML-estimator as n→∞.

We finally mention that Bayes estimation is sometimes used to find a minimax estimator.

Theorem

If Tn = δ(X1, . . . , Xn) is a Bayes estimator having constant risk (i.e. R(θ; δ) is indepen-
dent of θ), then Tn is a minimax estimator.

Proof (continuous case) :

Since Tn = δ(X1, . . . , Xn) is Bayes :∫
Θ

R(θ; δ)π(θ)dθ ≤
∫
Θ

R(θ; δ′)π(θ)dθ

for any other estimator δ′(X1, . . . , Xn).
But if R(θ; δ) does not depend on θ, we can say

R(θ; δ) ≤ sup
θ∈Θ

R(θ; δ′)

and

sup
θ∈Θ

R(θ; δ) ≤ sup
θ∈Θ

R(θ; δ′). �
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Example

Let X1, . . . , Xn be a random sample from X ∼ B(1; θ) with 0 < θ < 1.
For a Beta(α;β) prior, we found that the Bayes estimator was given by :

δ(X1, . . . , Xn) =

n∑
i=1

Xi + α

n+ α+ β
.

The risk :

R(θ; δ) = Eθ




n∑
i=1

Xi + α

n+ α+ β
− θ


2


Since
n∑
i=1

Xi ∼ B(n; θ), we have

Eθ(

n∑
i=1

Xi) = nθ and Eθ

( n∑
i=1

Xi

)2
 = nθ(1− θ + nθ).

Hence,

R(θ, δ) =
[(α+ β)2 − n]θ2 − [2α2 + 2αβ − n]θ + α2

(n+ α+ β)2
.

If α = β =

√
n

2
, then (α+β)2−n = 0, 2α2+2αβ−n = 0 and the risk becomes independent

of θ. Hence, the minimax estimator for θ is

n∑
i=1

Xi +

√
n

2

n+
√
n

.

2.5 Other estimation methods

2.5.1 The method of moments

Many parameters of unknown densities are nice functions of one or more moments of the
population random variable X, e.g.

θ = ϕ(µ1, . . . , µk) , k ≥ 1

where µr = E(Xr).

This suggests the following estimator for θ :

ϕ

(
1

n

n∑
i=1

Xi,
1

n

n∑
i=1

X2
i , . . . ,

1

n

n∑
i=1

Xk
i

)
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where, for r = 1, . . . , k, we replaced the population mean µr by the corresponding r-th
sample moment

1

n

n∑
i=1

Xr
i

Example

If θ = E(X), then the estimator is
1

n

n∑
i=1

Xi = X.

Example

If θ = V ar(X), then θ = µ2 − µ2
1 and the estimator is

1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

= S2.

Example

If X1, . . . , Xn is a random sample from X ∼ Un[θ1−θ2, θ1 +θ2] then E(X) = θ1, E(X2) =

θ2
1 +

1

3
θ2

2. Hence, θ1 = E(X), θ2 =
√

3[E(X2)− (E(X))2] and the moment estimators for

θ1 and θ2 are :

X and
√

3S.

2.5.2 The method of least squares

The method of least squares is generally used in the estimation of parameters in a linear
model. In the simplest case, we have n observations y1, . . . , yn made at different (known)
values x1, . . . , xn. The model is that y1, . . . , yn are values of random variables Y1, . . . , Yn
which are independent and such that

E(Yi) = α+ βxi , i = 1, . . . , n

where α and β are unknown parameters. The least squares principle takes estimates a
and b (for α and β respectively) in such a way that the sum of the squares of the errors

n∑
i=1

[yi − (a+ bxi)]
2

is minimized. This simple model and more general models are discussed in the courses on
Regression and Anova.
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2.6 Cramer-Rao Lower Bound and Uniformly Minimum Vari-
ance Unbiased estimation

2.6.1 Univariate case

The theorem and the proof of the Cramer lower bound is already given in Section (2.4). In
this section we will discuss the role of Cramer Rao lower bound in constructing a UMVU
estimator. The Cramer Rao Lower Bound ( CRLB) gives the minimum variance that can
be expected from an unbiased estimator. If E[t(X∼)] = τ(θ), where τ(θ) is a function of θ
then under regularity conditions,

var(t(X∼)) ≥
[τ ′(θ)]2

nE

(
−∂2lnfX(x∼;θ)

∂θ2

)

Equality holds iff there exists k(n, θ) such that∑ ∂lnfX(xi; θ)

∂θ
= k(n, θ)[t(x∼)− θ] (2.1)

t(X∼) is then UMVU estimator.

Definition
In a regular case of point estimation, the ratio of the CRLB to the actual variance of any
unbiased estimator for a parameter is called the efficiency of the estimator.

The Cramer-Rao inequality has two uses:

(i) It gives a lower bound for the variance of unbiased estimators.

(ii) If an unbiased estimator whose variance coincides with the Cramer-Rao lower bound
(CRLB) can be found, then this estimator is a UMVU estimator.

Example

Let X1 . . . Xn be a random sample from Exp(θ); i.e.,
fX(x; θ) = θe−θxI(0,∞)(x)
let τ(θ) = 1/θ ⇒ τ ′(θ) = −1/θ2.
CRLB = 1/n(θ2).
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Now consider

∑ ∂lnfX(xi; θ)

∂θ
=

n∑
i=1

(1/θ − xi)

= n/θ −
n∑
i=1

xi

= −n(x− 1/θ)

Therefore, X is UMVU estimator of 1/θ, since var(X) = 1/nθ2 which is the CRLB for
the variance of unbiased estimate of 1/θ

Example

Let X1 . . . Xn be a random sample from Poisson(θ); i.e.,

fX(x; θ) = e−θθx

x! . . . for x=0,1,. . .
Let τ(θ) = θ ⇒ τ ′(θ) = 1
∂lnfX(x;θ)

∂θ = −1 + x/θ
CRLB = θ/n

∑ ∂lnfX(xi; θ)

∂θ
=

n∑
i=1

(x/θ − 1)

=

∑n
i=1 xi
θ

− n

= n/θ(x− θ).

Therefore, X is UMVU estimator of θ, since var(X) = θ
n= CRLB.

Example
Let S2 denote the variance of a random sample of size n > 1 from a distribution which
is N(µ, θ), 0 < θ < ∞. We know that E[nS2/(n − 1)] = θ. What is the efficiency of the
statistic nS2/(n− 1)?

Solution:

lnf(x; θ) = −(x− µ)2

2θ
− ln(2πθ)

2
,

∂lnf(x; θ)

∂θ
=

(x− µ)2

2θ2
− 1

2θ

and
∂2lnf(x; θ

∂θ2
=

(x− µ)2

θ3
+

1

2θ2

Hence,−E
[
∂2lnf(x; θ)

∂θ2

]
=

1

2θ2
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Thus the Cramér lower bound is 2θ2/n
We know that nS2/θ ∼ χ2(n− 1), so that the variance of nS2/θ is 2(n− 1). Accordingly,
the variance of nS2/(n− 1) is 2θ2/(n− 1). Thus the efficency of the statistic nS2/(n− 1)
is (n− 1)/n.

2.7 Point estimation using R

Point estimation using the Methods of Moments and the Maximum likelihood

## Point Estimation: Method of estimation

## R code for Figure 2.1

theta=10

sampsz=10

nsim=100

moment.estimates=numeric(nsim)

ML.estimates=numeric(nsim)

for(i in 1:nsim)

{ru=runif(n=sampsz,min=0,max=theta)

moment.estimates[i]=2*mean(ru)

ML.estimates[i]=max(ru)}

plot(density(moment.estimates),xlab="",

ylab="",main="",ylim=c(0,0.6),las=1)

abline(v=theta,lty=3)

lines(density(ML.estimates),lty=2)

legend(11,0.5,legend=c("moment","ML"),lty=1:2,cex=0.6)

You should see that the method of moments

unbiased estimates of which many are not in the range space.

The maximum liklihood estimates almost all are less than 10.



2.7. POINT ESTIMATION USING R 99

## R code for Figure 2.2

##Normal Moments

##Method of moments estimator of the mean and the variance

of N(14,16)

mu=14

sigma=4

sampsz=10

nsim=100

mu.est=numeric(nsim)

var.est=numeric(nsim)

for(i in 1:nsim){

rn=rnorm(mean=mu,sd=sigma,n=sampsz)

mu.est[i]=mean(rn)

var.est[i]=mean((rn-mean(rn))^2)}

par(mfrow=c(2,1))

plot(density(mu.est))

abline(v=mu,lty=3)

plot(density(var.est))

abline(v=sigma,lty=3)

Note that the Figure 1.2 shows that the sample mean

is unbiased estimate of the population mean while

the sample variance with n in the denominator is not

5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

moment

ML

Figure 2.1: Method of Estimation
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Consistency

> ## Consistency(Figure 2.3)##

> ##To demonstrate that the MLE is consistent for

estimating theta for uniform(0,theta)

> theta=10

> sampsz=10

> nsim=100

> ml.est=numeric (nsim)

> for(i in 1:nsim){

+ ru=runif(n=sampsz,min=0,max=theta)

+ if(i==1) ml.est[i]=max(ru)

+ else ml.est[i]=max(ml.est[i-1],max(ru))}

> plot(ml.est,type="l")

> abline(h=theta,lty=2)

> #Note that as n increases the MLestimate

#approaches the value of the parameter.
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Figure 2.2: Normal Moments
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Relative efficiency

## MLE of the parameter of the cauchy distribution and relative

#efficiency. Here the true unknown alpha is zero, but we pretend

#we dont know that and see how good the MLE is as an estimator.

> n <- 30

> set.seed(42)

> x <- rcauchy(n)

> mu.start <- median(x) ## median as an estimator

> mu.start

[1] -0.1955062

> out2= mlogl2 <- function(mu, x) {

+ sum(log(1 + (x - mu)^2))

+ }

> out2 <- nlm(mlogl2, mu.start, x = x) ##MLE as estimator

> mu.hat <- out2$estimate

> mu.hat

[1] -0.1816501

#We see for these data, the MLE is slightly better than the sample

# median. But this is just one data set.For random data sometimes

#the MLE will be better and sometimes the sample median will be better.

#As statisticians, what we are interested is in the sampling

distributions of the two estimators, which we can easily study by simulation.

> nsim <- 100

> mu <- 0

> mu.hat <- double(nsim)

> mu.twiddle <- double(nsim)

> for (i in 1:nsim) {

+ xsim <- rcauchy(n, location = mu)

+ mu.start <- median(xsim)

+ out <- nlm(mlogl2, mu.start, x = xsim)

+ mu.hat[i] <- out$estimate

+ mu.twiddle[i] <- mu.start

+ }

> mean((mu.hat - mu)^2)

[1] 0.06203112

> mean((mu.twiddle - mu)^2)

[1] 0.08242236

> #The two numbers reported from the simulation

#are the mean square errors (MSE) of the two estimators.

# Their ratio

> mean((mu.hat - mu)^2)/mean((mu.twiddle - mu)^2)

[1] 0.7526007

> #is the asymptotic relative efficiency (ARE) of the estimators.

# Now we see that the MLE is more accurate, as theory says it must be.



2.7. POINT ESTIMATION USING R 103

MLE of of the parameters of N(θ1; θ2)

> ##MLE for the parameters of a normal population

#using sample of observations

> x=c(2,5,3,7,-3,-2,0)

> fn=function(theta,x){

+ sum(0.5*(x-theta[1])^2/theta[2]+0.5*log(theta[2]))}

> op=optim(c(2,9),fn,x=x,hessian=T)

> #c(2,9) are initial values for the parameters

#to be optimized over

> #fn=A function to be maximized, with first argument

> #the vector of parameters over which maximization is to take place.

> #It should return a scalar result

> op

$par

[1] 1.713956 11.347966

$value

[1] 12.00132

$counts

function gradient

45 NA

$convergence

[1] 0

$message

NULL

$hessian

[,1] [,2]

[1,] 6.168506e-01 1.793543e-05

[2,] 1.793543e-05 2.717398e-02

> ## 1.713956 and 11.347966 are MLEs of theta[1] and theta[2]
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2.8 Exercises

1. Let Y denote the number of successes in n independent Bernoulli trials with param-
eter θ, and define T1 = Y

n and T2 = Y+1
n+2 . Find and compare the MSE’s of T1 and

T2 when n = 4 and when n = 8.

2. Show that the function fX(x;α, β) = 1
β e
−(x−α)

β , x ≥ α, α ∈ R, β > 0 is a probability
density function.

3. On the basis of a random sample of size n from the density function of exercise 2
above, determine

(i) MLE of α when β is known.

(ii) MLE of β when α is known.

(iii) MLE of α and β when both are unknown.

(iv) a sufficient statistic for β when α is known.

(v) a sufficient statistic for α when β is known.

(vi) a set of sufficient statistics for β and α when they are both unknown.

(vii) Show that E(X) = α+β and E(X2) = α2 +2αβ+2β2 and calculate V ar(X).

(viii) Derive the moment estimators of β and α

4. If X ∼ Exp(θ), then E(X) = 1
θ . So a natural candidate for estimating θ from a

random sample of size n is θ̂ = 1
X

.

(i) Calculate E( 1
X

) when n > 1.

(ii) From the result of (a) find an unbiased estimator of the parameter θ and calcu-
late its MSE.

(iii) Show that the multiple of 1
X

with the smallest MSE in estimating θ is

(n− 2)/
∑n

i=1Xi.

5. Let X be a r.v. denoting the life span of an equipment. Then the reliability of
the equipment at time x, R(x), is defined as P (X > x). Now suppose X has an
exponential distribution with parameter θ. Then:

(i) Calculate the reliability based on this r.v.

(ii) Determine the MLE of R(x) on the basis of a random sample of size n from this
density.

6. Consider a random sample X of size n from a geometric distribution :
f(x|p) = p(1 − p)x−1, x = 1, 2, .... Define the estimator U as the indicator function
of the event X1 = 1.

(i) Show that U is an unbiased estimator of p.

(ii) Find a sufficient statistic, T .

(iii) Calculate E(U |T ).
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7. Let X1, ..., Xn be a random sample of size n from U(θ1, θ2) distribution, θ1 < θ2, and
let Y(1) and Y(n) be the smallest and the largest order statistics of the Xs

i . Obtain
the density function of Y1, Y2 and then by calculating E(Y(1)) and E(Y(n)), Construct

unbiased estimators of the mean θ1+θ2
2 and for the range (θ1 + θ2) depending only

on Y(1) and Y(n).

8. For estimating the parameter θ of the uniform distribution on (0, θ) based on a
random sample of size n,

(i) Find the method of moments estimator.

(ii) Show that the estimator in (i) is consistent.

9. Let X1, ..., Xn be a random sample from the Gamma (r, λ) with r known and λ
unknown. Let 1

λ = θ.

(i) Determine the Fisher information I(θ).

(ii) Show that the estimate U(X1, X2, ..., Xn) =
∑n
i=1Xi
nr is unbiased and calculate

its variance.

(iii) Show that V ar(U) = 1
nI(θ), so that U is UMVU estimator of θ.

10. Given: n independent pairs (Xi, Yi), each with joint density function

fX,Y (x, y; θ) = e
−θx−y

θ

for x > 0, y > 0, where θ > 0.

(i) Find the minimal sufficient statistic.

(ii) Find the MLE of θ. (Is it sufficient?)

11. Let X1, ..., Xn be a random sample from the geometric p.d.f.

(i) Show that X is both sufficient and complete.

(ii) Show that the estimate U defined by: U(X) = 1 if X = 1, and U(X) = 0 if
X = 0,is unbiased estimate of θ.

(iii) Conclude that U is the UMVU estimate of θ and also an entirely unreasonable
estimate.

(iv) Prove that the variance of U is uniformly bigger than the Cramer -Rao lower
bound.

12. Consider independent observations Y1, ..., Yn, where each Yi is N(α + βxi; 1), for
given constants x1, ..., xn. Find the joint MLE of the parameters (α, β).

13. Consider an observation from a density function fX(x; θ) = (1− θ)θx−1, x = 1, 2, ...,
θ ∈ (0, 1). Assume that θ has a uniform prior distribution on the interval (0,1).
Then,

(i) Determine the posterior density function of θ, given X = x.

(ii) Obtain the Bayes estimator of θ with respect to squared error loss.
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14. Given a random sample of size n from X ∼ Exp(θ) with θ > 0. For an Exp(β)
prior, find bayes estimate of θ assuming a quadratic loss function.

15. Let X1, . . . , Xn be a random sample from X ∼ N(θ; 1), θ ∈ IR and on IR, consider
the density function of θ to be that of N(µ; 1) with µ known. Then show that the
Bayes estimator with respect to squared error loss of θ, is given by :nx+µ

n+1 .

16. Suppose we observe a Bernoulli process with parameter θ and found that it took
15 trials to get the 4th success. If our prior for θ is Beta(4; 2) and if we assume
quadratic loss, find the Bayes estimator of θ?

17. Let X1, . . . , Xn be a random sample from X ∼ N(θ; θ),θ > 0.

(i) Find a complete sufficient statistic if such exists.

(ii) Argue that X is not an UMVU estimator of θ.

(iii) Is θ either a location or a scale parameter?

18. Let X denote the mean of a random sample of size n = 5 from X ∼ N(µ; 1). Given
that µ ∼ N(5; 1) and X = 4, find the Bayes estimator assuming absolute error loss.

19. Let Z1, ..., Zn be a random sample from X ∼ N(0; θ2), θ > 0. Define Xi = |Zi|, and
consider estimation of θ and θ2 on the basis of the random sample X1, ..., Xn.

(i) Find the UMVU estimator of θ2 if such exists.

(ii) Find an estimator of θ2 that has uniformly smaller mean-squared error than the
estimator that you found in part (i).

(iii) Find the UMVU estimator of θ if such exists.

20. Suppose a lot of 10 items has M defective, and a simple random sample of size four
includes exactly one defective. Find the Bayes estimator of M, when M ∼ B(10; 1

2),
assuming quadratic loss.

21. Let X1, ..., Xn be a random sample from f(x; θ) = e−(x−θ)I[θ,∞)(x) for −∞ < θ <∞.

(i) Find a sufficient statistic for θ.

(ii) Find a maximum-likelihood estimator of θ.

(iii) Find a method of moments estimator of θ.

(iv) Is there a complete sufficient statistic? If so, find it.

(v) Find the UMVU estimator of θ if one exists.

(vi) Using the prior density g(θ) = e−θI0,∞(θ), find the Bayes estimator of θ and
use quadratic loss.

22. Show that the family of densities with density function

f(x; r, s) ∝ xr−1(1− x)s−1,

0 < x < 1, where r > 0,s > 0, is in the two-parameter exponential family. (The
constant of proportionality will involve the parameters r and s.)
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23. LetX1, ..., Xn be a random sample from the density

f(x;α, θ) = (1− θ)θx−αI(α,α+1,...)(x),

where −∞ < α <∞ and 0 < θ < 1.

(i) Find a two-dimensional set of sufficient statistics.

(ii) Find the maximum likelihood estimator of (α, θ)

24. Let X be a r.v. having the Negative Binomial distribution with parameter θ ∈ (0, 1).
Find the UMVU estimator of g(θ) = 1

θ and determine its variance.

25. Let X1, ..., Xn be i.i.d. r.v’s from the U(θ; 2θ), θ ∈ (0,∞) distribution and set

U1 =
n+ 1

2n+ 1
X(n)

and

U2 =
n+ 1

5n+ 4
[2X(n) +X(1)].

Then show that both U1 and U2 are unbiased estimators of θ and that U2 is uniformly
better than U1 (in the sense of variance).

26. Suppose that certain particles are emitted by a radioactive source (whose strength
remains the same over a long period of time) according to a Poisson distribution
with parameter θ during a unit of time. The source in question is observed for n
time units, and let X be the r.v. denoting the number of times that no particles
were emitted. Find the MLE of θ in terms of X.
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Chapter 3

Interval Estimation

3.1 Introduction

In this chapter we move away from inference based upon the use of a single estimate of an
unknown population quantity, focusing instead upon interval estimation, or also known as
set estimation.

3.2 Problems with point estimators

An estimator is a statistic and therefore a random variable and it will have a probability
distribution function. In this respect the use of a single statistic as a point estimate ignores
the inherent variation in the random variable. In addition, for continuous variables the
probability that a random variable assumes a single value is zero.
Instead of choosing one plausible point, one may try to determine a plausible subset of
the parameter space Θ. This is called set estimation (or interval estimation, in the
case that Θ ⊂ IR).

If D(x1, . . . , xn) is such a subset of Θ (depending on x1, . . . , xn, but not on θ) we would
like to have that

Pθ(θ ∈ D(X1, . . . , Xn))

(the probability that the random set contains θ) is large. Therefore, the statistician
chooses a small number α ∈ [0, 1] (e.g. α = 0.05) and tries to construct a set such that

Pθ(θ ∈ D(X1, . . . , Xn)) = 1− α , for all θ ∈ Θ

Such a region D(x1, . . . , xn) is called a 100(1− α)% confidence region for θ.

109
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Note

Sometimes, particularly in discrete models, we cannot find a region for which this proba-
bility is exactly 1− α, for a given preassigned α. If so, we try to have at least 1− α and
as close as possible to 1− α :

Pθ(θ ∈ D(X1, . . . , Xn)) ≥ 1− α , for all θ ∈ Θ.

3.2.1 Confidence intervals

The general idea from the introduction becomes simple in the case of a single real pa-
rameter θ ∈ Θ ⊂ IR. In this case, a confidence region D(x1, . . . , xn) is typically of the
form

[l(x1, . . . , xn), r(x1, . . . , xn)]

i.e. an interval with l(x1, . . . , xn) and r(x1, . . . , xn) in Θ. The functions l and r will be
such that, for a sample X1, . . . , Xn : l(X1, . . . , Xn) and r(X1, . . . , Xn) are statistics.

Definition

Let X1, . . . , Xn be a random sample from X with density f(x; θ), θ ∈ Θ ⊂ IR.
Let α ∈]0, 1[.
If

Ln = l(X1, . . . , Xn) and Rn = r(X1, . . . , Xn)

are two statistics satisfying

Pθ(Ln ≤ θ ≤ Rn) = 1− α , for all θ ∈ Θ

then the random interval [Ln, Rn] is called a 100(1− α)% interval estimator for θ.
For observations x1, . . . , xn, the corresponding interval estimate for θ

[l(x1, . . . , xn), r(x1, . . . , xn)]

is called a 100(1− α)% confidence interval for θ.

Definition: One Sided Lower Confidence Interval

Let T1(X∼) = t1(X1, . . . , Xn) be a statistic such that P [T1 ≤ θ] = 1 − α. [T1,∞) is a one
sided lower (1− α)100% confidence interval for θ.
For observations x1, . . . , xn, the corresponding interval estimate for θ

[t1(x1, . . . , xn),∞)

is called a 100(1− α)% lower confidence interval for θ.
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Definition: One Sided Upper Confidence Interval

Let T2(X∼) = t2(X1, . . . , Xn) be a statistic such that P [T2 ≥ θ] = 1− α. (−∞, T2] is a one
sided upper(1− α)100% confidence interval for θ.
For observations x1, . . . , xn, the corresponding interval estimate for θ

(−∞, t2(x1, . . . , xn)]

is called a 100(1− α)% upper confidence interval for θ.

Example Let X1, . . . , Xn be a random sample from Exp(θ). We wish to drive a one
sided lower 100(1− α)% confidence interval for θ. We know that X is sufficient for θ and
also that 2nX/θ ∼ χ2(2n).Thus,

P [2nX/θ < χ2
2n;1−α] = 1− α

P [2nX/χ2
2n;1−α < θ] = 1− α

Similarly, a one sided upper 100(1− α)% confidence interval is obtained from:

P [θ < 2nX/χ2
2n;α] = 1− α

3.2.2 A method for finding confidence interval

Pivotal Quantity
LetX1, . . . Xn denote a random sample with common density fX(; θ). LetQ = q(X1, . . . , Xn; θ).
If Q has a distribution that does not depend on θ, Q is a pivotal quantity.

Example LetX1, . . . , Xn be a random sample from N(µ; 9).
X ∼ N(µ; 9/n) is not a pivotal quantity as it depends on µ
X−µ
3/
√
n
∼ N(0; 1) is a pivotal quantity

X/µ ∼ N(1; 9/nµ2) is not a pivotal quantity.

Pivotal Quantity Method

If Q = q(x; θ) is a pivotal quantity with known probability density function, then for any
fixed 0 < (1− α) < 1 ,there exists q1, q2 depending on (1− α) such that

P [q1 < t(x1, ..., xn) < q2] = 1− α

If for each sample realization (x1, . . . , xn)

q1 < Q(x∼;θ) < q2

iff functions t1(x1, . . . , xn) < θ < t2(x1, . . . , xn) for functions t1 and t2, then (T1, T2)is a
100(1− α)%confidence interval for θ.
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Note:

(i) q1 and q2 are independent of θ.

(ii) For any fixed (1 − α) there exists many possible pairs of numbers (q1, q2), such that
P [q1 < Q < q2] = 1− α as we will show below.

(iii) Essential feature of this method is that the inequality P [q1 < Q < q2] can be pivoted
as

[t(.) < θ < t(.)]

for any set of sample values x1, . . . , xn.

3.2.3 Criteria for comparing confidence intervals

As mentioned above for any fixed (1−α) there are many possible pairs of numbers q1 and
q2 that can be selected so that P (q1 < Q < q2) = 1− α.

Example Let X1, . . . , X25 be a random sample of size 25 from N(θ; 9). We wish to
construct a 95% C.I. for θ.
X is the maximum liklihood estimatior of θ.
X−θ
σ/
√
n
∼ N(0; 1)⇒ X−θ

σ/
√
n

is a pivotal quantity.

For given (1− α), we can find q1 and q2 such that

P [q1 <

√
n(X − θ)
σ

< q2] = 1− α

P [X − σq2√
n
< θ < X − σq1√

n
] = 1− α

Therefore, a 100(1− α)% confidence interval for θ is (X − σq2√
n
, X − σq1√

n
). Let the sample

mean computed from 25 observations be x =17.5. Then inserting this value in the in-
equality above we have the following possible confidence intervals: CI1(16.32, 18.68) and
CI2(16.49, 19.12).

How does CI2 compares to CI1? Obviously CI1 is superior to CI2, since the length of
CI1 = 2.36 is less than the length of CI2 = 2.63.
We want to select q1 and q2 that will make t1 and t2 close together. This can be achieved
by selecting q1 and q2 such that the length of the interval is the shortest, or the average
length of the random interval the smallest. Such an interval is desirable since it is more
informative. We have to note also that shortest-length confidence intervals do not always
exist.
For the previous example, the length of the confidence interval is given by

[X − q1(σ/
√
n)]− [X − q2(σ/

√
n)] = (q2 − q1)(σ/

√
n)

We have to select q1 and q2, such that (q2 − q1) is minimum under the restriction that
P (q1 < Q < q2) = 1 − α. This is true if q1 = −q2. Such an interval is a 100(1 − α)%
shortest-length confidence interval based on Q.
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Example Let X1, . . . , Xn be a random sample from N(µ;σ2), where σ2 is known. Con-
sider the pivotal quantity:

Q(X∼;µ) =
X − µ
σ/
√
n
.

Then
P [X − q2(σ/

√
n) < µ < X − q1(σ/

√
n)] = 1− α

The length of the confidence interval is L = (σ/
√
n)(q2− q1). We wish to minimize L such

that

φ(q2)− φ(q1) =

∫ q2

q1

fX(x)dx = 1α

where fX(x) = 1/
√

2πe−x
2/2.

dL/dq1 =
σ√
n

(dq2/dq1 − 1)

and

fX(q2)
dq2

dq1
− fX(q1) = 0

which give us

dL/dq1 =
σ√
n

[
fX(q1)

fX(q2)
− 1

]
The minimum occurs when fX(q1) = fX(q2),that is, when q1 = −q2

Note: For some problems, the equal tailed choice of q and −q will provide the minimum
expected length, but for others it will not.

3.3 Confidence interval for the parameters of a normal pop-
ulation

3.3.1 The one sample problem

Let X1, . . . , Xn be a random sample of X with X ∼ N(µ;σ2)

Example [Confidence interval for µ if σ2 is known]

A natural estimator for µ is the ML-estimator X = 1
n

n∑
i=1

Xi. We have, by the central limit

theorem,
X − µ√

σ2

n

∼ N(0; 1).
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Hence, for any a

P

−a ≤ X − µ√
σ2

n

≤ a

 = Φ(a)− Φ(−a)

or

P

(
X − a

√
σ2

n
≤ µ ≤ X + a

√
σ2

n

)
= Φ(a)− Φ(−a)

where Φ is the standard normal distribution function.
Let us now choose a such that

Φ(a)− Φ(−a) = 1− α
or 2[1− Φ(a)] = α

or Φ(a) = 1− α

2

or a = Φ−1
(

1− α

2

)
≡ z1−α

2
(notation)

N(0;1) density

a/2

0
z1-a/2

Then we have :

P

(
X − z1−α/2

√
σ2

n
≤ µ ≤ X + z1−α/2

√
σ2

n

)
= 1− α.

Conclusion : if x1, . . . , xn are the observed values of a sample from
X ∼ N(µ;σ2) with σ2 known, then a 100(1− α)% confidence interval for µ is[

x− z1−α/2

√
σ2

n
, x+ z1−α/2

√
σ2

n

]
.

Example [Confidence interval for µ if σ2 is unknown]

We replace σ2 in the previous example by the unbiased estimator nS2

n−1 . We know :

X − µ√
S2

n−1

∼ t(n− 1).

As before, we obtain :

P

(
X − tn−1;1−α/2

√
S2

n− 1
≤ µ ≤ X + tn−1;1−α/2

√
S2

n− 1

)
= 1− α
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where tn−1;1−α/2 = F−1(1 − α
2 ) with F the distribution function of a t(n − 1) random

variable :

t(n-1) density

a/2

0 tn-1; 1-a/2

Conclusion : if x1, . . . , xn are the observed values of a sample from
X ∼ N(µ;σ2) with σ2 unknown, then a 100(1− α)% confidence interval for µ is[

x− tn−1;1−α/2

√
s2

n− 1
, x+ tn−1;1−α/2

√
s2

n− 1

]
.

Example [Confidence interval for σ2 if µ is known]

The ML-estimator for σ2 is 1
n

n∑
i=1

(Xi − µ)2 and we know that

1

σ2

n∑
i=1

(Xi − µ)2 ∼ χ2(n).

Hence, for all 0 < a < b :

P

(
a ≤ 1

σ2

n∑
i=1

(Xi − µ)2 ≤ b

)
= F (b)− F (a)

or

P

(
1

b

n∑
i=1

(Xi − µ)2 ≤ σ2 ≤ 1

a

n∑
i=1

(Xi − µ)2

)
= F (b)− F (a)

where F is the distribution function of a χ2(n) random variable.
In order to obtain a 100(1−α)% confidence interval, we have to choose a and b such that

F (b)− F (a) = 1− α
or [1− F (b)] + F (a) = α

A possible choice is

1− F (b) = F (a) = α
2

i.e. a = F−1
(
α
2

)
≡ χ2

n;α/2

b = F−1
(
1− α

2

)
≡ χ2

n;1−α/2
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a/2

a/2

n ; a/2
c2

c2 (n) - density

c2
n ; 1 - a/2

0

Conclusion : a 100(1− α)% confidence interval for σ2 if µ is known is given by[
1

χ2
n;1−α/2

n∑
i=1

(xi − µ)2,
1

χ2
n;α/2

n∑
i=1

(xi − µ)2

]
.

Example [Confidence interval for σ2 if µ is unknown]
Use the fact that

nS2

σ2
∼ χ2(n− 1).

Conclusion : a 100(1− α)% confidence interval for σ2 if µ is unknown is given by[
n

χ2
n−1;1−α/2

.s2,
n

χ2
n−1;α/2

.s2

]
.

3.3.2 The two sample problem

LetX1, . . . , Xn1 and Y1, . . . , Yn2 be, respectively two random samples of sizs n1 and n2

from the two normal distributions N(µ1;σ2
1) and N(µ2;σ2

2).

Example [Confidence interval for µ2 − µ1, if σ2
1 and σ2

2 are known]

A 100(1− α)% confidence interval for µ2 − µ1 if σ2
1 and σ2

2 are known, is given byy − x− z1−α/2

√
σ2

1

n1
+
σ2

2

n2
, y − x+ z1−α/2

√
σ2

1

n1
+
σ2

2

n2

 .
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Example [Confidence interval for µ2 − µ1 if σ2
1 = σ2

2 = σ2, but unknown]

To construct a confidence interval for µ2 − µ1, we consider the estimator Y −X, where

Y =
1

n2

n2∑
i=1

Yi , X =
1

n1

n1∑
i=1

Xi.

Denote the sample variances by

S2
1 =

1

n1

n1∑
i=1

(Xi −X)2 , S2
2 =

1

n2

n2∑
i=1

(Yi − Y )2.

We have

Y −X ∼ N(µ2 − µ1;σ2(
1

n1
+

1

n2
))

n1S
2
1

σ2
1

∼ χ2(n1 − 1)

n2S
2
2

σ2
2

∼ χ2(n2 − 1)

n1S
2
1 + n2S

2
2

σ2
∼ χ2(n1 + n2 − 2)

Define the “pooled variance” S2
p by

S2
p =

n1S
2
1 + n2S

2
2

n1 + n2 − 2
.

Then, we have

Y −X − (µ2 − µ1)√
S2
p

(
1

n1
+

1

n2

) =

Y−X−(µ2−µ1)√
σ2
(

1
n1

+ 1
n2

)√
n1S

2
1+n2S

2
2

σ2

n1+n2−2

∼ t(n1 + n2 − 2).

Conclusion : a 100(1−α)% confidence interval for µ2−µ1, if σ2
1 = σ2

2 but unknown, is
given by[

y − x− tn1+n2−2;1−α/2

√
s2
p

(
1

n1
+

1

n2

)
, y − x+ tn1+n2−2;1−α/2

√
s2
p

(
1

n1
+

1

n2

)]
.



118 CHAPTER 3. INTERVAL ESTIMATION

Example [Confidence interval for µ2 − µ1, if possibly σ2
1 6= σ2

2]

It is natural to use the distribution function of

T =
Y −X − (µ2 − µ1)√

S2
1

n1−1 +
S2
2

n2−1

but unfortunately, this distribution depends on the unknown σ2
1 and σ2

2 for fixed n1, n2.
This is known as the Behrens-Fisher problem.

There are several solutions to this problem. One of them is due to Welch

The distribution of T is approximately t(ν
∧

), where

ν
∧

=

(
s21

n1−1 +
s22

n2−1

)2

1
n1−1

(
s21

n1−1

)2
+ 1

n2−1

(
s22

n2−1

)2 .

If ν
∧

is not an integer, then we take the degrees of freedom equal to the integer nearest to

ν
∧

.

The idea behind this solution is to approximate the distribution of
S2
1

n1−1 +
S2
2

n2−1 by that of a χ2(ν) variable, multiplied by σ2

ν , where σ2 and ν are chosen so

that the first two moments of
S2
1

n1−1 +
S2
2

n2−1 agree with the first two moments of σ2

ν .χ
2(ν).

Now,

E

(
S2

1

n1 − 1
+

S2
2

n2 − 1

)
=
σ2

1

n1
+
σ2

2

n2

V ar

(
S2

1

n1 − 1
+

S2
2

n2 − 1

)
=

2σ4
1

(n1 − 1)n2
1

+
2σ4

2

(n2 − 1)n2
2

E

(
σ2

ν
χ2(ν)

)
=
σ2

ν
.ν = σ2

V ar

(
σ2

ν
χ2(ν)

)
=
σ4

ν2
.2ν = 2

σ4

ν

Hence


σ2

1

n1
+
σ2

2

n2
= σ2

σ4
1

(n1 − 1)n2
1

+
σ4

2

(n2 − 1)n2
2

=
σ4

ν
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This gives :

ν =

(
σ2

1

n1
+
σ2

2

n2

)2

1
n1−1

(
σ2

1

n1

)2

+ 1
n2−1

(
σ2

2

n2

)2 .

The unknown parameters σ2
1 and σ2

2 are now replaced by estimates
n1s

2
1

n1 − 1
and

n2s
2
2

n2 − 1
.

This gives :

ν
∧

= −

(
s2

1

n1 − 1
+

s2
2

n2 − 1

)2

1
n1−1

(
s2

1

n1 − 1

)2

+ 1
n2−1

(
s2

2

n2 − 1

)2 .

Conclusion : an approximate 100(1−α)% confidence interval for µ2 − µ1 in the case
of possibly unequal variances σ2

1 and σ2
2 is given byy − x− t

ν
∧
;1−α/2

√
s2

1

n1 − 1
+

s2
2

n2 − 1
, y − x+ t

ν
∧
;1−α/2

√
s2

1

n1 − 1
+

s2
2

n2 − 1

 .

Notes

� It can be shown that
min(n1 − 1, n2 − 1) ≤ ν

∧
≤ n1 + n2 − 2

� For n1 = n2 = n and σ2
1 = σ2

2 : ν
∧

= 2n− 2

Example [Confidence interval for
σ2

2

σ2
1

, if µ1 and µ2 are known]

use that

n1∑
i=1

(Xi − µ1)2

σ2
1

/
n1

n2∑
i=1

(Yi − µ2)2

σ2
2

/
n2

∼ F (n1, n2)
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Conclusion : a 100(1 − α)% confidence interval for the ratio σ2
2/σ

2
1 if µ1 and µ2 are

known is given by

Fn1,n2;α/2
n1

n2

n2∑
i=1

(yi − µ2)2

n1∑
i=1

(xi − µ1)2

, Fn1,n2;1−α/2
n1

n2

n2∑
i=1

(yi − µ2)2

n1∑
i=1

(xi − µ1)2

 .

Example [Confidence interval for
σ2

2

σ2
1

, if µ1 and µ2 are unknown]

Use that
n1S

2
1

σ2
1

/
(n1 − 1)

n2S
2
2

σ2
2

/
(n2 − 1)

∼ F (n1 − 1, n2 − 1).

Conclusion : a 100(1 − α)% confidence interval for the ratio σ2
2/σ

2
1 if µ1 and µ2 are

unknown is given by[
Fn1−1,n2−1;α/2

n2
n2−1s

2
2

n1
n1−1s

2
1

, Fn1−1,n2−1;1−α/2

n2
n2−1s

2
2

n1
n1−1s

2
1

]
.

Here :

Fn1−1,n2−1;α/2 ≡ F−1(α/2)

Fn1−1,n2−1;1−α/2 ≡ F−1(1− α/2)

with F the distribution function of a F (n1 − 1, n2 − 1) random variable.

Fig0204-eps-converted-to.pdf
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Example [Confidence Interval for Matched Pairs]

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from bivariate normal distribution with pa-
rameters E(X) = µ1, E(Y ) = µ2, var(X) = σ2

1, var(Y ) = σ2
2 and correlation coefficient(X,Y ) =

ρ. Assume σ2
1, σ

2
2 and ρ known.

Let Di = Xi − Yi for i = 1, 2, . . . , n. Then,

Di ∼ N(µ1 − µ2, σ
2
1 + σ2

2 + 2ρσ1σ2︸ ︷︷ ︸
σ2
D

)

D ∼ N(µ1 − µ2, σ
2
D/n)

[D−(µ1−µ2)]
σD/
√
n
∼ N(0, 1)∑n

i=1(Di −D)2/σ2
D ∼ χ2(n− 1)

√
n[D−(µ1−µ2)]

σD√∑n
i=1

(Di−X)2

σ2
D

(n−1)

∼ t(n− 1)

⇔
√
n(n−1)[D−(µ1−µ2)]√∑n

i=1(Di−D)2
∼ t(n− 1)

We can use it as pivotal quantity as the distribution is free of any unknowns.

⇒ P

−q ≤ √n(n− 1)[D − (µ1 − µ2)]√∑n
i=1(Di −D)2

≤ q

 = 1− α

Thus, a100(1− α)% confidence interval for (µ1 − µ2) is

[D − q
√∑n

i=1(Di−D)2

n(n−1) , D + q

√∑n
i=1(Di−D)2

n(n−1) ]

3.4 Other examples of confidence intervals

Example

LetX1, . . . , Xn be a random sample from Un[0, θ], θ > 0.
To construct a confidence interval for θ, we use

Mn = max(X1, . . . , Xn)

and note that the distribution of
Mn

θ
does not depend on θ :
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P

(
Mn

θ
≤ x

)
=



0 . . . if x ≤ 0

xn . . . if 0 ≤ x ≤ 1

1 . . . if x ≥ 1

Hence, for all 0 ≤ a ≤ b ≤ 1 :

P

(
a ≤ Mn

θ
≤ b
)

= bn − an.

If
bn − an = 1− α

then P

(
Mn

b
≤ θ ≤ Mn

a

)
= 1− α.

Since we know that θ ≥Mn, we choose b = 1.
Then a = α

1
n and

P (Mn ≤ θ ≤ α−
1
nMn) = 1− α .

Conclusion : a 100(1− α)% confidence interval for θ in the Un[0, θ] distribution is

[max(xi), α
− 1
n max(xi)].

Example

Let X1, . . . , Xn be a random sample from Exp(λ), λ > 0.
Use characteristic functions to see that

2λ
n∑
i=1

Xi ∼ χ2(2n) .

Hence

P

(
χ2

2n;α/2 ≤ 2λ
n∑
i=1

Xi ≤ χ2
2n;1−α/2

)
= 1− α .

Conclusion : a 100(1−α)% confidence interval for λ in the Exp(λ) distribution is given
by χ2

2n;α/2

2
n∑
i=1

xi

,
χ2

2n;1−α/2

2
n∑
i=1

xi

 .
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Example

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. r.v.’s from the Beta distribution with β = 1 and α = θ
unknown.
To construct a 100(1− α)% confidence interval we proceed as follows:
−
∑n

i=1 lnXi is a sufficient statistic for θ . Consider the transformation Yi = −2θlnXi. It
can be easily shown that its p.d.f. is 1

2e
yi/2,yi > 0 which is the probability density function

of χ2(2). This shows that

Tn = −2θ
n∑
i=1

logXi =
n∑
i=1

Yi

is distributed as χ2(2n), which shows that Tn is a pivotal quantity. Now find l and r
(l < r) such that

P (l ≤ χ2(2n) ≤ r) = 1− α (3.1)

which give us

P (l ≤ −2θ
n∑
i=1

logXi ≤ r) = 1− α

which is equivalent to

P

(
χ2

2n;α
2∑n

i=1 Yi
≤ θ ≤

χ2
2n;1−α

2∑n
i=1 Yi

)
= 1− α

Therefore, a 100(1− α)% confidence interval for θ is[
χ2

2n;α
2∑n

i=1 yi
,
χ2

2n;1−α
2∑n

i=1 yi

]

3.5 Bayesian confidence intervals

In Bayesian statistics the estimator for a parameter θ is given by the mean of the posterior
distribution (in the case of squared error loss) or by a median of the posterior distribution
(in the case of absolute error loss).

In the same spirit we can construct a 100(1−α)% Bayesian confidence interval for θ
by finding two functions

l(x1, . . . , xn) and r(x1, . . . , xn)

such that the posterior probability that Θ
∼

falls in the interval [l(x1, . . . , xn), r(x1, . . . , xn)]
equals 1− α (or is at least 1− α) :

P (l(X1, . . . , Xn) ≤ Θ
∼
≤ r(X1, . . . , Xn)|X1 = x1, . . . , Xn = xn) = 1− α
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i.e. ∑
l(x1,...,xn)≤θ≤r(x1,...,xn)

P (Θ
∼

= θ|X1 = x1, . . . , Xn = xn) = 1− α

in the discrete case

or
r(x1,...,xn)∫
l(x1,...,xn)

f
Θ
∼
|X1,...,Xn

(θ|x1, . . . , xn)dθ = 1− α

in the continuous case

Example

Let X1, . . . , Xn be a random sample from X ∼ N(θ;σ2) with σ2 known, θ ∈ IR.

As a prior density, we take Θ
∼
∼ N(µ0;σ2

0) with µ0 and σ2
0 known.

For squared error loss, we obtained before that the posterior density is

N

(
σ2µ0 + σ2

0nx

σ2 + σ2
0n

;
σ2σ2

0

σ2 + nσ2
0

)
.

Conclusion : a 100(1− α)% Bayesian confidence interval for θ is given by

σ2µ0 + σ2
0nx

σ2 + σ2
0n

± z1−α/2

√
σ2σ2

0

σ2 + nσ2
0

.

Example
Suppose that X = (X1, . . . , Xn) is a random sample from the Bernoulli distribution with
success parameter p. Moreover, suppose that p has a prior beta distribution with left
parameter a > 0 and right parameter b > 0. Denote the number of successes by

Y =
n∑
i=1

Xi

Recall that for a given value of p, Y has the binomial distribution with parameters n and
p.
Given Y = y, the posterior distribution of p is beta with left parameter a + y and right
parameter b+ (n− y).
A (1−α) level Bayesian confidence interval for p is (l(y), r(y)) , where l(y) is the quantile
of order α/2 and r(y) is the quantile of order 1− α/2 for the beta distribution (posterior
distribution of p).
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Example
Suppose that X = (X1, . . . , Xn) is a random sample from Poisson(θ). Moreover, suppose
that θ has a prior Γ(α;β). The postirior distribution is given by

f
Θ
∼
|X1,...,Xn

(θ|x1, . . . , xn) ∼ Γ[(n+ 1/β)−1,
∑

xi + α]

It follows that

2(n+ 1/β)f
Θ
∼
|X1,...,Xn

(θ|x1, . . . , xn) ∼ χ2[2(
∑

xi + α)]

and
P [χ2

v;α/2 < 2(n+ 1/β)f
Θ
∼
|X1,...,Xn

(θ|x1, . . . , xn) < χ2
v;1−α/2] = 1− α

where v = 2(
∑
xi + α).

Thus, a 100(1− α)% Baysesian confidence interval for θ is given by(
χ2
v;α/2

2(n+ 1/β)
,
χ2
v;1−α/2

2(n+ 1/β)

)

3.6 Confidence regions in higher dimensions

The notion of confidence intervals can be extended to confidence regions for a general

k-dimensional parameter θ
∼

= (θ1, . . . , θk) ∈ Θ ⊂ IRk.
The k-dimensional rectangle

{(θ1, . . . , θk)|lj(x1, . . . , xn) ≤ θj ≤ rj(x1, . . . , xn); j = 1, . . . , k}

is called a 100(1− α)% confidence rectangle for θ∼ if

P (lj(X1, . . . , Xn) ≤ θj ≤ rj(X1, . . . , Xn); j = 1, . . . , k) = 1− α .

Sometimes, multidimensional confidence rectangles can be obtained from one dimensional
confidence intervals.
Suppose we have confidence intervals for the individual components of θ∼ : i.e. for j =
1, . . . , k with

Ljn = lj(X1, . . . , Xn) , Rjn = rj(X1, . . . , Xn)

we have
P (Ljn ≤ θj ≤ Rjn) = 1− αj , say.

If the pairs (Ljn, Rjn), j = 1, . . . , k are independent, then for the rectangle

[L1n, R1n]× [L2n, R2n]× . . .× [Lkn, Rkn]

we have

P (Ljn ≤ θj ≤ Rjn ; j = 1, . . . , k) =
k∏
j=1

(1− αj).
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If there is no independence, then by Bonferroni’s inequality (P (
k⋂
j=1

Aj) ≥ 1 −

k∑
j=1

P (Acj)) we only have P (Ljn ≤ θj ≤ Rjn; j = 1, . . . , k) ≥ 1−
k∑
j=1

αj .

Hence, if αj = α
k for all j = 1, . . . , k, then

P (Ljn ≤ θj ≤ Rjn ; j = 1, . . . , k) ≥ 1− α.

Example

Let X1, . . . , Xn be a random sample from N(µ;σ2).
To set up a 100(1−α)% confidence rectangle for the two-dimensional parameter θ∼= (µ, σ2),
we can use (see before) :

� P

(
X − tn−1;1−α/4

√
S2

n− 1
≤ µ ≤ X + tn−1;1−α/4

√
S2

n− 1

)
= 1− α

2

� P

(
nS2

χ2
n−1;1−α/4

≤ σ2 ≤ nS2

χ2
n−1;α/4

)
= 1− α

2 .

For the resulting rectangle, we can only say

P

X − tn−1;1−α/4

√
S2

n− 1
≤ µ ≤ X + tn−1;1−α/4

√
S2

n− 1
,

nS2

χ2
n−1;1−α/4

≤ σ2 ≤ nS2

χ2
n−1;α/4



≥ 1− α

since the two events are not independent.
This rectangular confidence region for θ∼= (µ, σ2) is

(θ1, θ2)|x− tn−1;1−α/4

√
s2

n− 1
≤ θ1 ≤ x+ tn−1;1−α/4

√
s2

n− 1
,

ns2

χ2
n−1;1−α/4

≤ θ2 ≤
ns2

χ2
n−1;α/4

}
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n s2

2cn-1;a/4

n s2

2cn-1;1-a/4

q2

q1s2

n-1
s2

n-1  

xtn-1;1- a/4

  

x + tn-1;1- a/4x -

A confidence region which is not rectangular can be obtained, using the independence of
X and S2.
Indeed, since

X − µ√
σ2

n

∼ N(0; 1) and
nS2

σ2
∼ χ2(n− 1)

we can determine constants a > 0, 0 < b < c such that

P

−a ≤ X − µ√
σ2

n

≤ a

 =
√

1− α and P

(
b ≤ nS2

σ2
≤ c
)

=
√

1− α .

We then have, using independence of X and S2 :

P

−a ≤ X − µ√
σ2

n

≤ a, b ≤ nS2

σ2
≤ c

 =
√

1− α.
√

1− α = 1− α.

The 100(1− α)% confidence region for θ∼= (µ, σ2) is :

{
(θ1, θ2)|(x− θ1)2 ≤ a2θ2

2

n
,
ns2

c
≤ θ2 ≤

ns2

b

}
:
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n s2

n s2

q
2

q
1

  

x

b

c

=
n
a2

(        )2
q
1

-

  x

q2

3.7 Approximate confidence intervals

In all the examples considered up to now (except the Behrens-Fisher problem) the con-
struction of a confidence interval followed from the fact that the distribution of some
random variable was exactly known (standard normal, t, χ2, F, . . .). The use of the large
sample limiting distribution (as n → ∞) leads to approximate 100(1 − α)% confi-
dence intervals.

We give some examples.

Example [Confidence interval for the mean if the variance is known]

X1, . . . , Xn : random sample from X with E(X) = µ and V ar(X) = σ2 with σ2 known.
Use the central limit theorem :

X − µ√
σ2

n

d→ N(0, 1) , n→∞

and proceed as before.

Conclusion : an approximate 100(1 − α)% confidence interval for µ if σ2 is known is
given by [

x− z1−α/2

√
σ2

n
, x+ z1−α/2

√
σ2

n

]
.
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Example [Confidence interval for the mean if the variance is unknown]

X1, . . . , Xn : random sample from X with E(X) = µ and V ar(X) = σ2.

Because of the central limit theorem in the foregoing example and the fact that S2 P→ σ2,
we have by Slutsky’s theorem :

X − µ√
S2

n−1

d→ N(0; 1) , n→∞.

From this we obtain :

Conclusion : an approximate 100(1−α)% confidence interval for µ if σ2 is unknown isx− z1−α/2

√
s2

n− 1
, x+ z1−α/2

√
s2

n− 1

 .
Another useful tool in the construction of approximate confidence intervals is the asymp-
totic normality result of the maximum likelihood estimator : for a large sample from
X, with sufficiently regular density f(x; θ), we have that the ML-estimator Tn for θ satisfies

Tn − θ√
1

ni(θ)

d→ N(0; 1) , n→∞

where i(θ) is the Fisher information number.

Example

Let X1, . . . , Xnbe a random sample from N(0;σ2).
Put θ = σ2.

The ML-estimator for θ is 1
n

n∑
i=1

X2
i and i(θ) = 1

2θ2
.

Hence
1
n

n∑
i=1

X2
i − θ√

2θ2

n

d→ N(0; 1) , n→∞.

Conclusion : an approximate 100(1− α)% confidence interval for σ2 in N(0, σ2) is
1
n

n∑
i=1

x2
i

1 + z1−α/2

√
2
n

,

1
n

n∑
i=1

x2
i

1− z1−α/2

√
2
n

 .
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Example [Confidence interval for a proportion]

Let X1, . . . , Xn be a random sample from B(1; θ), where θ ∈ [0, 1].

The ML-estimator for θ is X = 1
n

n∑
i=1

Xi and i(θ) = 1
θ(1−θ) .

Hence :
X − θ√
θ(1− θ)

n

d→ N(0; 1) , n→∞ .

Hence :

P

−z1−α/2 ≤
X − θ√
θ(1− θ)

n

≤ z1−α/2

 ≈ 1− α

or

P

(
(X − θ)2 ≤ z2

1−α/2
θ(1− θ)

n

)
≈ 1− α

or

P

(
(1 + 1

n
z2

1−α/2)θ2 − (2X + 1
n
z2

1−α/2)θ +X
2 ≤ 0

)
≈ 1− α

For fixed X (0 ≤ X ≤ 1)

(1 + 1
n
z2

1−α/2)θ2 − (2X + 1
n
z2

1−α/2)θ +X
2

is a quadratic polynomial in θ with 2 real roots. Hence the above is equivalent to : (with
z ≡ z1−α/2) :

P

nX + z2

2 − z
√
nX(1−X) + z2

4

n+ z2
≤ θ ≤

nX + z2

2 + z
√
nX(1−X) + z2

4

n+ z2

 ≈ 1− α.

Conclusion : an approximate 100(1 − α)% confidence interval for the probability of
success θ in B(1; θ) isyn + z2

2 − z
√

yn(n−yn)
n + z2

4

n+ z2
,
yn + z2

2 + z

√
yn(n−yn)

n + z2

4

n+ z2

 .
where yn = nx is the number of successes in n trials and z = z1−α/2.
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Example

Let X1, . . . , Xnbe a random sample from Poisson (θ), with θ > 0.

The ML-estimator for θ is X and i(θ) =
1

θ
.

Hence,
X − θ√

θ

n

d→ N(0; 1) , n→∞.

We obtain, with z = z1−α/2 :

P

−z ≤ X − θ√
θ

n

≤ z

 ≈ 1− α

or

P

(
(X − θ)2 ≤ z2 θ

n

)
≈ 1− α.

This leads to :

Conclusion : an approximate 100(1− α)% confidence interval for θ in a
Poisson (θ) distribution is[

x+
z2

2n
−
√
xz2

n
+

z4

4n2
, x+

z2

2n
+

√
xz2

n
+

z4

4n2

]
where z = z1−α/2.

The computations needed in the last two examples can be avoided (but lead to a less
accurate approximate confidence interval) replacing the asymptotic variance 1

ni(θ) of the
ML-estimator by the estimator

1

ni(Tn)
.

We then construct an approximate confidence interval from the fact that, in most cases :

Tn − θ√
1

ni(Tn)

d→ N(0; 1) , n→∞.

Example [Confidence interval for a proportion]

Let X1, . . . , Xn be a random sample from B(1; θ) with θ ∈ [0, 1].
If we use that
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X − θ√
X(1−X)

n

d→ N(0; 1) , n→∞

then we obtain the approximate 100(1− α)% confidence interval for θ :

[
x− z

√
x(1− x)

n
, x+ z

√
x(1− x)

n

]
.

Note Since X ∼ Bernoulli :

S2 =
1

n

n∑
i=1

X2
i −X

2
= X −X2

= X(1−X),

this is also a particular case of the second example in this section.

Example

Let X1, . . . , Xn be a random sample from Poisson (θ).
Using

X − θ√
X

n

d→ N(0; 1) , n→∞

leads to the approximate 100(1− α)% confidence interval for θ :

[
x− z

√
x

n
, x+ z

√
x

n

]

Example

X1, . . . , Xn : random sample from X ∼ N(0;σ2).
Put θ = σ2.
Using
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1
n

n∑
i=1

X2
i − θ√

2
n

(
1
n

n∑
i=1

X2
i

)2
=

1
n

n∑
i=1

X2
i − θ(

1
n

n∑
i=1

X2
i

)√
2
n

d→ N(0; 1)

we obtain as an approximate 100(1− α)% confidence interval for θ :

[(
1− z

√
2

n

)(
1

n

n∑
i=1

x2
i

)
,

(
1 + z

√
2

n

)(
1

n

n∑
i=1

x2
i

)]
.

The approximate confidence intervals obtained from the asymptotic normality result of
the ML-estimator are not invariant under transformations of the parameter.

Example

Let X1, . . . , Xn be a random sample from N(0;σ2).
Put θ = σ.

The ML-estimator for θ is

(
1

n

n∑
i=1

X2
i

)1/2

and i(θ) =
2

θ2
.

This leads to an approximate 100(1− α)% confidence interval for θ :


(

1
n

n∑
i=1

x2
i

)1/2

1 + z
√

1
2n

,

(
1
n

n∑
i=1

x2
i

)1/2

1− z
√

1
2n

 .

Since θ > 0, we could obtain an approximate 100(1 − α)% confidence interval for σ2 by
squaring. This would give


1
n

n∑
i=1

x2
i(

1 + z
√

1
2n

)2 ,

1
n

n∑
i=1

x2
i(

1− z
√

1
2n

)2


but, this is not the same as what we found before. Indeed :

(
1± z

√
1

2n

)2

= 1± z
√

2

n
+
z2

2n
.
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A method that produces approximate confidence intervals invariant under transforma-
tions of the parameter can be deduced from the following fact (see chapter 1) :

S(θ;X∼)√
ni(θ)

d→ N(0; 1) , n→∞

(under regularity conditions on f(x; θ)).

Here

S(θ;X∼) =
n∑
i=1

∂

∂θ
lnf(Xi; θ)

is the score statistic and i(θ) = E

[
− ∂2

∂θ2
lnf(X; θ)

]
.

Let φ be a strictly increasing function of θ and let φ(θ) = θ∗.

Then

∂

∂θ
lnf(X; θ) =

∂

∂θ∗
lnf(X; θ).

∂φ

∂θ
.

Hence :

E

[
∂

∂θ
lnf(X; θ)

]
= 0⇒ E

[
∂

∂θ∗
lnf(X; θ)

]
= 0 .

Also

∂2

∂θ2
lnf(X; θ) =

∂2

∂θ∗2
lnf(X; θ)

(
∂φ

∂θ

)2

+
∂

∂θ∗
lnf(X; θ).

∂2φ

∂θ2
.

Hence :

E

[
∂2

∂θ2
lnf(X; θ)

]
=

(
∂φ

∂θ

)2

E

[
∂2

∂θ∗2
lnf(X; θ)

]
or

i(θ) =

(
∂φ

∂θ

)2

i(θ∗) .
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Hence :
S(θ∗;X)√
ni(θ∗)

=
S(θ;X)√
ni(θ)

.

Example

Let X1, . . . , Xn be a random sample from X ∼ N(0;σ2).
Put θ = σ.

Then

S(θ;X∼ ) = −n
θ

+
1

θ3

n∑
i=1

X2
i

i(θ) =
2

θ2

Hence :

−n
θ

+
1

θ3

n∑
i=1

X2
i√

2n

θ2

=

1

θ2

n∑
i=1

X2
i − n

√
2n

d→ N(0; 1)

and this produces an approximate 100(1− α)% confidence interval for θ :
√√√√√ n∑

i
x2
i

n+ z
√

2n
,

√√√√√ n∑
i
x2
i

n− z
√

2n

 .

Notes

� This is not the same as in the previous example. But for large n, the difference in
negligible.

� If we would have taken σ2 as the parameter, then this procedure would have given
n∑
i=1

x2
i

n+ z
√

2n
,

n∑
i=1

x2
i

n− z
√

2n


and these endpoints are the squares of the above.
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For the case of a multidimensional parameter, large sample approximate confidence
regions can be obtained from the fact that (under regularity conditions) the ML-estimator
T∼n = (Tn1, . . . , Tnk) is asymptoticially normal, with mean θ∼ = (θ1, . . . , θk) and variance-
covariance matrix

V =
1

n
B−1(T∼n)

where B(θ∼) is the Fisher information matrix.
It follows that

(T∼n− θ∼)V
−1(T∼n− θ∼)

′

is approximately χ2(k) distributed.
Hence, we can find a number cα, such that for all θ∼ :

Pθ∼((T∼n− θ∼)V
−1(T∼n− θ∼)

′ ≤ cα) ≈ 1− α.

From this, we obtain an approximate 100(1−α)% confidence region for θ∼ (a k-dimensional
confidence ellipsoid).

3.8 Sample size determination

The question of how large the sample size should be to achieve a given accuracy is a
very practical one. The answer is not easy. The problem is related to confidence interval
estimation. We consider some examples.

3.8.1 Estimation of the mean of a normal population

Let X1, . . . , Xn be a random sample from X ∼ N(µ;σ2). Suppose we want a 100(1−α)%
confidence interval for µ of length at most 2d, where d is some prescribed number.

� If σ2 is known, then the length of a 100(1−α)% confidence interval for µ is given by

2z

√
σ2

n

where z = z1−α/2.
Hence, the width will be ≤ 2d if we choose the sample size n as the (smallest) integer
satisfying

n ≥ σ2

d2
z2 .

� If σ2 is unknown, but if from previous experience some upper bound σ2
1 is known we

can use : n ≥ σ2
1

d2
z2.
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� If σ2 is unknown and no upper bound is available, then the length of a
100(1− α)% confidence interval is random

2tn−1;1−α/2

√
S2

n− 1

and may be arbitrary large.
A way out to achieve a length of at most 2d is the following sequential procedure
: the two-stage sampling procedure of C.Stein :

1. Take a first sample of fixed size n0 ≥ 2, and compute the sample mean and the
sample variance :

X0 =
1

n0

n0∑
i=1

Xi

S2
0 =

1

n0

n0∑
i=1

(Xi −X0)2.

2. Take N − n0 further observations where N is the smallest integer satisfying

N ≥ n0 + 1

and

N ≥
n0
n0−1S

2
0

d2
t2n0−1;1−α/2

and use as a confidence intervalXN − tn0−1;1−α/2

√
n0
n0−1S

2
0

N
, XN + tn0−1;1−α/2

√
n0
n0−1S

2
0

N


where

XN =
1

N

N∑
i=1

Xi

=

n0∑
i=1

Xi +
N∑

i=n0+1
Xi

N
=
n0

N
X0 +

1

N

N∑
i=n0+1

Xi .

The length of this confidence interval equals

2tn0−1;1−α/2

√
n0
n0−1S

2
0

N

and this is ≤ 2d, by the choice of N .
That

P

XN − tn0−1;1−α/2

√
n0
n0−1S

2
0

N
≤ µ ≤ XN + tn0−1;1−α/2

√
n0
n0−1S

2
0

N

 = 1− α
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follows from the fact that

XN − µ√
n0
n0−1

S2
0

N

∼ t(n0 − 1)

(Note : N is a random variable)

Proof

P

 XN − µ√
n0
n0−1

S2
0

N

≤ x

 = P


XN−µ√

σ2

N√
n0S

2
0

σ2

n0−1

≤ x



=
∑
k

P


Xk−µ√

σ2

k√
n0S

2
0

σ2

n0−1

≤ x , N = k

 .

Since for k ≥ n0 + 1 :

Xk =
n0

k
X0 +

1

k

k∑
i=n0+1

Xi .

Since X is normal, X0 and S2
0 are independent.

It follows that Xk and S2
0 are independent.

Hence the above equals :

=
∑
k

P (T ≤ x , N = k) with T ∼ t(n0 − 1)

= P (T ≤ x). �

Note: In case that the one-sided 1−α confidence interval is required,then d is specified
as the absolute value of the difference between mean ,µ, and the upper or lower limit ,i.e.,

|X − (X + Zα
σ√
n
| = d

Then,

Zα
σ√
n

= δ

which yields

n = (Zασ/δ)
2

.
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3.8.2 Estimation of a proportion

Let X1, . . . , Xn be a random sample from X ∼ B(1; θ). Suppose we want to determine
the sample size needed to obtain an approximate 100(1− α)% confidence interval for θ of
length at most 2d.

� If we use the approximate 100(1− α)% confidence interval[
x− z

√
x(1− x)

n
, x+ z

√
x(1− x)

n

]
or with yn = nx = the number of successes in n trials :[

yn
n
− z
√

yn
n (1− yn

n )

n
,
yn
n

+ z

√
yn
n (1− yn

n )

n

]
we need to have

z

√
yn
n (1− yn

n )

n
≤ d .

If we use that
yn
n

(
1− yn

n

)
=

1

4
−
(
yn
n
− 1

2

)2

≤ 1

4

then we obtain

z

√
1

4n
≤ d

or

n ≥ z2

(2d)2

(For α = 0.05 : z2 = (1.96)2 ∼= 4 one sometimes uses n ≈ 1

d2
)

� A similar formula holds if we use the approximate 100(1− α)% confidence interval

yn + z2

2 ± z
√
yn(n− yn)

n
+
z2

4
n+ z2

.

To obtain a length of at most 2d, we need to have

z

n+ z2

√
yn(n− yn)

n
+
z2

4
≤ d

or, again using that
yn(n− yn)

n
≤ n

4
,

z

√
1

4(n+ z2)
≤ d

or,

n ≥ z2

(2d)2
− z2
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� The obtained formulas are crude since they rely on the inequality

θ(1− θ) ≤ 1

4
(0 ≤ θ ≤ 1)

which is only good near θ =
1

2
.

It is clear that we can do better if we know a priori that θ ≤ θ0 <
1

2
or θ ≥ θ1 >

1

2
.

3.8.3 Sampling from a finite population

The lower bounds for the required sample size may be very high. This can be a problem
if the size of the population is small.
A way out can be to use the procedure of sampling without replacement.

Suppose we have a finite population of size N :

{x1, x2, . . . , xN}

Denote the sample of size n by

X1, . . . , Xn

where Xi denotes the i-th object sampled.
In sampling without replacement, we have

P (X1 = x′1, X2 = x′2, . . . , Xn = x′n) =
1

N

1

N − 1
. . .

1

N − n+ 1

for all {x′1, . . . , x′n} ⊂ {x1, . . . , xN} (n ≤ N).
The marginal distribution of each of the Xi (i = 1, . . . , n) is uniform over {x1, . . . , xn}
:

P (Xi = x) =


1

N
. . . if x = x1, . . . , xN

0 . . . if otherwise.

Let us examine some properties of the sample mean X and the sample variance S2 as
estimators for the population mean µ and the population variance σ2.
The population mean and population variance are now

µ =
1

N

N∑
i=1

xi

σ2 =
1

N

N∑
i=1

(xi − µ)2 =
1

N

N∑
i=1

x2
i − µ2 .

We have, for each i, j = 1, . . . , n (j 6= i) :
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• E(Xi) =
1

N

N∑
i=1

xi = µ

• V ar(Xi) = E(X2
i )− (E(Xi))

2 =
1

N

N∑
i=1

x2
i − µ2 = σ2

• Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

=
N∑
i=1

N∑
j = 1

j 6= i

xixjP (Xi = xi, Xj = xj)− µ2

=
1

N

1

N − 1

N∑
i=1

N∑
j = 1

j 6= i

xixj − µ2

=
1

N

1

N − 1

N∑
i=1

xi

 N∑
j=1

xj − xi

− µ2

=
1

N

1

N − 1

( N∑
i=1

xi

)2

−
N∑
i=1

x2
i

− µ2

=
1

N

1

N − 1

[
(Nµ)2 −

N∑
i=1

x2
i

]
− µ2

= − 1

N − 1

[
1

N

N∑
i=1

x2
i − µ2

]

= − σ2

N − 1

Hence
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• E(X) =
1

n

n∑
i=1

E(Xi) =
1

n
nµ = µ

• V ar(X) = V ar

(
1

n

n∑
i=1

Xi

)

=
1

n2

n∑
i=1

V ar(Xi) +
1

n2

n∑
i=1

n∑
j = 1

j 6= i

Cov(Xi, Xj)

=
1

n2
nσ2 − n(n− 1)

n2

σ2

N − 1

=
σ2

n

(
1− n− 1

N − 1

)
=

σ2

n

N − n
N − 1

<
σ2

n

Hence : X is still unbiased but with smaller variance.

The fraction
N − n
N − 1

is called the finite population correction factor. This factor

becomes negligible if N is large and
n

N
is small (say, n is less than 5% of N).

Indeed :
N − n
N − 1

=
1− n

N

1− 1
N

≈ 1 .

The quantity
n

N
is called the sampling fraction.

• E(S2) = E

(
1

n

n∑
i=1

X2
i −X

2

)

=
1

n

n∑
i=1

E(X2
i )− E(X

2
)

=
1

n

n∑
i=1

[V ar(Xi) + (E(Xi))
2]− [V ar(X) + (E(X))2]

=
1

n

n∑
i=1

(σ2 + µ2)−
(
σ2

n

N − n
N − 1

+ µ2

)
= σ2

(
1− 1

n

N − n
N − 1

)
= σ2n− 1

n

N

N − 1

Hence :
N − 1

N

n

n− 1
S2 is unbiased for σ2.
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To find an approximate confidence interval for the population mean, we use that

X − µ√
σ2

n

N − n
N − 1

is approximately N(0; 1).

For the case of proportions :

Suppose N is the size of the population and that N1 of them have a certain property S
(and N −N1 do not have this property). We want to estimate

θ =
N1

N

If we take a sample of size n without replacement, and denote

Xi =


1 . . . if the i-th object sampled has property S

0 . . . if otherwise

then

Yn =
n∑
i=1

Xi = the number of observations with propertyS.

Since Yn = nX and since

µ =
N1

N
= θ

σ2 = µ− µ2 = µ(1− µ) =
N1

N

(
1− N1

N

)
= θ(1− θ)

we have from the above

Yn
n − θ√

θ(1− θ)
n

.
N − n
N − 1

is approximately N(0; 1)

[In fact the exact distribution of Yn is hypergeometric with parameters N1, N and n :

P (Yn = x) =



 N1

x


 N −N1

n− x


/ N

n

 . . . if x = 0, 1, . . . , n

0 . . . if otherwise . ]

Thus :

P

(
Yn
n
− z
√
θ(1− θ)

n
.
N − n
N − 1

≤ θ ≤ Yn
n

+ z

√
θ(1− θ)

n
.
N − n
N − 1

)
≈ 1− α .
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If we replace θ under the square root sign by
Yn
n

, we obtain :

an approximate 100(1− α)% confidence interval for θ isyn
n
− z

√
yn
n

(
1− yn

n

)
n

.
N − n
N − 1

,
yn
n

+ z

√
yn
n

(
1− yn

n

)
n

.
N − n
N − 1

 .

(If N is large and n/N is small then
N − n
N − 1

≈ 1 and this interval is like before)

To achieve a length of at most 2d, we need to have

z

√
yn
n

(
1− yn

n

)
n

.
N − n
N − 1

≤ d .

Using that
yn
n

(
1− yn

n

)
≤ 1

4
, this gives

z

√
1

4n
.
N − n
N − 1

≤ d

or, solving for n :

n ≥ N

1 + (N − 1)

(
2d

z

)2 .

For α = 0.05 : z = 1.96 ≈ 2 one sometimes uses the practical approximation

n ≈ N

1 +Nd2
.
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3.9 Interval estimation using R

> ##Sampling of confidence interval

> ##R code for Figure 3.1##

> n=20;nsim=100;mu=4;sigma=2

> xbar=rep(NA,nsim)

> xsd=rep(NA,nsim)

> SE=rep(NA,nsim)

>

> for(i in 1:nsim){

+ x=rnorm(n,mean=mu,sd=sigma)

+ xbar[i]=mean(x)

+ xsd[i]=sd(x)

+ SE[i]=sd(x)/sqrt(n)

+ alpha=0.05;zstar=qnorm(1-alpha/2)

+ matplot(rbind(xbar-zstar*SE,xbar+zstar*SE),rbind(1:nsim,1:nsim),

type="l",lty=1,lwd=2,xlab = "mean tail length",ylab = "sample run")}

> abline(v=mu)

> cov=sum(xbar-zstar*SE <= mu & xbar+zstar*SE >=mu)

> cov ## Number of intervals that contain the parameter.

[1] 93

#Note that out of 100 intervals constructed 93(i.e. 93%)

# of them contain the mean.

##If we increase the sample size we can bring this percentage close to 95%.
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Figure 3.1: sampling of confidence interval
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Figure 3.2: Bayseian Interval Estimate
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##code for Figure3.2##

#Bayesian interval estimate

x = 0

n = 10

alpha1 = 1 / 2

alpha2 = 1 / 2

conf.level = 0.95

alpha = 1 - conf.level

qlow = qbeta(alpha / 2, x + alpha1, n - x + alpha2)

qhig = qbeta(alpha / 2, x + alpha1, n - x + alpha2,

lower.tail = FALSE)

round(c(qlow, qhig), 4)

eps = 1e-4

theta = seq(0, 1, eps)

y = dbeta(theta, x + alpha1, n - x + alpha2)

ymax = max(y)

if (! is.finite(ymax)) ymax <- max(

dbeta(0.02, x + alpha1, n - x + alpha2),

dbeta(0.98, x + alpha1, n - x + alpha2))

qlow = round(qlow / eps) * eps

qhig = round(qhig / eps) * eps

plot(theta, y, type = "l", ylim = c(0, ymax),

xlab = "p", ylab = "h(p | x)")

tpoly = seq(qlow, qhig, eps)

xpoly = c(tpoly, qhig, qlow)

ypoly = c(dbeta(tpoly, x + alpha1, n - x + alpha2), 0, 0)

ypoly = pmin(ypoly, par("usr")[4])

polygon(xpoly, ypoly, border = NA, col = "hotpink1")

lines(theta, y)
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confidence interval for the mean of a normal population: Two sided

> ## Confidence intervals for the mean of the normal distribution.

> #Two sided confidence interval

> #Let us generate normal data and then find a 95% confidence interval

> #for the mean of a normal population when the variance is known.

> # (The set.seed command resets the random number

> #generator to a specific point so that we can reproduce results

> #if required.)

> set.seed(12345)

> normdata <- rnorm(15, mean=100, sd=20)

> mean(normdata)+c(-1,1)*qnorm(0.975)*20/sqrt(length(normdata))#we used

> # z-distribution.

[1] 90.56137 110.80379

>

> # Let us consider the following data on ozone levels (in ppm)

> # taken on 10 days in a market garden.We wish to construct a 95%

> # confidence interval for the population mean assuming that the

> #observations are taken from a normal population.

> gb=c(5,5,6,7,4,4,3,5,6,5)

> mean(gb)+c(-1,1)*qt(0.975,9)*sd(gb)/sqrt(10)# used t-distribution

[1] 4.173977 5.826023 # A 95% confidence interval for the mean
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confidence interval for the mean of a normal population: One sided

> #One sided lower 95% confidence interval for a normal population

# mean with variance=1.5.

> gb=c(5,5,6,7,4,4,3,5,6,5)

> sigma=1.5

> simple.z.test = function(x,sigma,conf.level=0.95) {

+ n = length(gb);xbar=mean(gb)

+ alpha = 1 - conf.level

+ zstar = qnorm(1-alpha)

+ SE = sigma/sqrt(n)

+ xbar - zstar*SE

+ }

> ## now try it

> simple.z.test(x,sigma)

[1] 4.219777

> #One sided upper 95% confidence interval for a normal population mean

# with variance=1.5.

> gb=c(5,5,6,7,4,4,3,5,6,5)

> sigma=1.5

> simple.z.test = function(x,sigma,conf.level=0.95) {

+ n = length(gb);xbar=mean(gb)

+ alpha = 1 - conf.level

+ zstar = qnorm(1-alpha)

+ SE = sigma/sqrt(n)

+ xbar + zstar*SE

+ }

> ## now try it

> simple.z.test(gb,sigma)

[1] 5.780223

Confidence interval for the variance of a normal population

> ## Confidence interval for the population variance

> x=rnorm(30,20,4)

> df=length(x)-1

> s2=var(x)

> df*s2/qchisq(c(0.025,0.975),df,lower.tail=FALSE)

[1] 10.54129 30.03488

## Note that in this case we know the true variance and we observe

# that it lies in the interval.
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Approximate confidence interval for proportion

> ## Approximate confidence interval for proportion

> ##You can find the formula used to get this confidence interval

## on page(134).

> m=1;n=20;p=0.5

> xbar=rbinom(m,n,p)/n

> yn=n*xbar

> z=qnorm(0.975)

> c=yn+z*z/2

> b=sqrt((yn*(n-yn))/n +z*z/4)

> l=(c-z*b)/(n+z*z)

> r=(c+z*b)/(n+z*z)

> cat("95%CI is(",l,",",r,")\n",sep="")

95%CI is(0.299298,0.700702)

Approximate confidence interval for Poisson parameter

> ## Approximate 95% confidence interval for the Poisson parameter.

> ## The formula used to get this confidence interval can be found

on page (135)

> n=2000

> la=2

> z=qnorm(0.975)

> x=rpois(n,la)

> xbar=mean(x)

> c=xbar+(z*z)/(2*n)

> d=sqrt(((xbar*z*z)/n) +(z^4)/(4*n^2))

> l=c-d

> r=c+d

> cat("95%CI is(",l,",",r,")\n",sep="")

95%CI is(1.913378,2.036543)
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3.10 Exercises

1. Let X1, . . . , Xn be a random sample with p.d.f. given by

fX(x; θ) = e−(x−θ)I(θ,∞)(x), θ ∈ Θ = IR,

set Y1 = X(1). Then show that:

(i) The p.d.f. f of Y1 is given by fY 1(y1) = ne−n(y−θ)I(θ,∞)(y).

(ii) The random variable Tn(θ) = 2n(Y1 − θ) is distributed as χ2
2.

(iii) A confidence interval for θ, based on Tn(θ), with confidence coefficient 1−α is
of the form [Y1 − (b/2n), Y1 − (a/2n)].

2. Let X1, . . . , Xn be a random sample from U(0, θ). Set R = X(n) −X(1). Then:

(i) Find the distribution of R.

(ii) Show that a confidence interval for θ, based on R with confidence coefficient 1−α
is of the form [R,R/c], where c is a root of the equation cn−1[n− (n− 1)c] = α.

3. Let X1, . . . , Xn be a random sample from Weibull p.d.f. Then show that

(i) The r.v. Tn(θ) = 2Y/θ is distributed as χ2
2n where Y =

∑n
i=1.

(ii) A confidence interval for θ, based on Tn(θ), with confidence coefficient 1− α is
of the form [2Y/b, 2Y/a].

4. Suppose that the random variable X has a geometric probability density function
with parameter θ.

(i) Derive a conservative one-sided lower 100(1 − α)% confidence limit for θ based
on a single observation x.

(ii) If x = 5, find a one sided lower 90% confidence limit for θ.

(iii) If X1, . . . , Xn is a random sample from a geometric probability density function
with parameter θ, describe the form of one sided lower 100(1−α)% confidence
limit for θ based on sufficient statistics.

5. Let X1, . . . , Xn be a random sample from Exp(1/θ). Suppose that the prior density
of θ is also Exp(1/β), where β is known. Then,

(i) Find the posterior distribution of θ.

(ii) Derive 100(1− α)% Bayesian interval estimate of θ.

(iii) Derive 100(1− α)% Bayesian interval estimate of 1/θ.

6. If x is a value of a random variable having the exponential distribution, find k so
that the interval from 0 to kx is a 1-α confidence interval for the parameter θ.

7. Let X be a single observation from the density

fX(x; θ) = θxθ−1I(0,1)(x)

, where θ > 0.
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(i) Find a pivotal quantity, and use it to find a confidence- interval estimator of θ.

(ii) Show that (Y/2, Y ) is a confidence interval. Find the confidence cofficent.

8. LetX1, . . . , Xn be a random sample from fX(x; θ) = I(θ−1/2,θ+1/2)(x). Let Y1 < . . . <
Yn be the corresponding ordered sample. Show that (Y1, Yn) is a confidence interval
for θ. Find its confidence cofficient.

9. Let X1, . . . , Xn be a random sample from fX(x; θ) = (1/θ)x(1−θ)/θI[0,1](x), where
θ > 0. Find the 100(1− α)% interval for θ. Find its expected length.

10. Consider independent random samples from two exponential distributions, Xi ∼
Exp(θ1) and Yj ∼ Exp(θ2); i = 1, . . . , n1, j = 1, . . . , n2.

(i) Show that (θ2/θ1)(X/Y ) ∼ F (2n1, 2n2)

(ii) Derive a 100(1− α)% CI for θ2/θ1.

11. Consider a random sample of size n from U(0, θ) θ > 0, and let Yn be the largest
order statistic.

(i) Find the probability that the random interval (Yn, 2Yn) contains θ.

(ii) Find the constant c such that (yn, cyn) is a 100(1− α)%CI for θ.

12. LetX1, . . . , Xn be a random sample from a beta(θ, 1) p.d.f. and assume that θ has
a gamma(α, β) prior p.d.f. Find a 1− α Bayes interval set for θ.

13. Suppose that X1, . . . , Xn is a random sample from a N(µ;σ2) population.

(i) If σ2 is known, find a minimum value for n to guarantee that a 0.95 confidence
interval for µ will have length no more than σ/4.

(ii) If σ2 is unknown, find a minimum value for n to guarantee, with probability
0.90, that a 0.95 confidence interval for µ will have length no more than σ/4.

14. If X1 and X2 are independent random variables having, respectively, binomial dis-
tributions with the parameters n1 and θ1 and the parameters n2 and θ2, construct a
1−α large sample confidence interval for θ1−θ2. (Hint: Approximate the distribution
of X1/n1 −X2/n2 with a normal distribution.)

15. Let Y denote the sum of of the items of a random sample of size n from a distribution
which is B(1, θ) Assume that the unknown θ is a value of a random variable Θ which
has a beta distribution with parameters α and β.

(i) Find the posterior distribution of θ.

(ii) Explain how to find a Bayesian interval estimate of θ subject to the availability
of suitable tables of integrals.

16. X is a single observation from θeθI(0,∞(x), where θ > 0.

(i) (X, 2X) is a confidence interval for 1/θ. What is the confidence coefficient?

(ii) Find another confidence interval for 1/θ that has the same coefficient but smaller
expected length.
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17. Let X1, X2 be a random sample of size 2 from N(θ; 1). Let Y1 < Y2 be the corre-
sponding order sample.

(i) Determine γ in P [Y1 < θ < Y2] = γ. Find the expected length of the interval
(Y1, Y2).

(ii) Find the confidence interval estimator for θ using x − θ as a pivotal quantity
that has a confidence coefficent γ and compare the length with the expected
length in part(i).

18. X1, . . . , Xn is a random sample from (1/θ)x(1−θ)/θI[0,1](x), where θ > 0. Find the
100(1− θ)% CI for θ. Find the expected length. Find the limiting expected length
of your confidence interval. Find n such that P [length ≤ δθ] ≥ ρ for fixed δ and ρ.
(You may use the central limit theorem).

19. Develop a method for estimating the parameter of the Poisson distribution by a
confidence interval.

20. Let X1, . . . , Xn be a random sample from f(x/θ) = θxθ−1I(0,1)(x), where θ > 0.
Assume that the prior distribution of Θ is given by

fΘ(θ) =
λrθr−1e−λθ

Γ(r)
I(0,∞)(θ)

where r and λ are known. Find a 95 percent Bayesian interval estimator of θ.
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Chapter 4

Hypothesis Testing

4.1 Introduction

The two major areas of statistical inference are estimation of parameters and testing hy-
potheses. With regard to estimation we have tried to deal about it in the preceding
chapters and the case of hypotheses testing will be discussed in this chapter. The general
aim of the chapter is develop general methods for testing hypotheses and to apply those
methods to some common problems.
A hypothesis is a statement or a claim about some unknown aspect of the state of
nature. Scientific investigators, industrial quality control engineers, market researchers,
government decision makers, among others, will often have hypotheses about the partic-
ular facets of nature of immediate concern to them. They gather data and look to the
data for evidence that will help either support or cast doubt on their assertion. A test of
hypothesis is a procedure, based on sample information, that culminates in an inferential
statement about the hypothesis and possibly, in some situations, in a decision what action
to take. Let X1, . . . , Xn be a random sample from X. Suppose that X has density f(x; θ)
belonging to some family {f(x; θ)|θ ∈ Θ}.

Definition

A statistical hypothesis is a statement about the distribution of X (in our case : about
the parameter θ).

We write :
H : θ ∈ Θ0

where Θ0 is some subset of Θ.

If Θ0 contains only one member, then we say that the statistical hypothesis H is simple.
Otherwise H is called composite.

155
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Definition

A test of a statistical hypothesis H is a rule for deciding whether to reject H or not,
given the observations.

Such a rule is based on the observed values of X∼ = (X1, . . . , Xn), namely x∼= (x1, . . . , xn).

Let X denote the sample space of all possible values (x1, . . . , xn) of X1, . . . , Xn. A test of
the hypothesis H can be defined as :

Partition the sample space X into two subsets :

- the set R of outcomes x∼ not consistent with H : the rejection region of H

- the set Rc = X\R of outcomes, consistent with H : the acceptance region of H.

Hence, the rule is :

reject H if and only if x∼= (x1, . . . , xn) ∈ R

Such a test is called a non randomized test.
It is specified by the rejection region R which is also called the critical region of the test.

Note

In a non randomized test, the decision is usually not taken on the basis of
x∼ = (x1, . . . , xn) but on some function t(x∼) = t(x1, . . . , xn), where Tn = t(X1, . . . , Xn) is
some statistic, called test statistic. The rejection region R then typically takes the form

{x∼ | t(x∼) ≥ c}
or {x∼ | t(x∼) ≤ c}
or {x∼ | t(x∼) ≤ c} ∪ {x∼ | t(x∼) ≥ c

′}.

Purely to overcome some mathematical difficulties (see later) we also have to define ran-
domized tests. Suppose we have a function, defined on X , taking values in the interval
[0, 1] :

φ : X → [0, 1]

x∼ 7→ φ(x∼)
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Then a test can be defined as follows :

If x∼ is observed, then calculate φ(x∼), and

- reject H with probability φ(x∼)

- do not reject H with probability 1− φ(x∼).

Such a test is called a randomized test. It is specified by the function φ which is called
the critical function of the test.
(We will sometimes use the terminology : “a test φ” instead of “a test with critical func-
tion φ”.)

Note
A non randomized test is a particular case of a randomized test. Indeed, if we define

φ(x∼) =


1 . . . if x∼ ∈ R

0 . . . if x∼ ∈ R
c

then we have a critical function of a non randomized test with critical region R.

4.2 Neyman - Pearson theory

In the general theory of Neyman and Pearson, two statistical hypotheses are involved :

- the null hypothesis : H0 : θ ∈ Θ0

- the alternative hypothesis : H1 : θ ∈ Θ1 = Θ\Θ0.

The hypothesis to be tested is the null hypothesis (and the idea is that, if H0 is not true,
then H1 is true). We say that we test H0 versus H1 (or H0 against H1).

When performing a test of H0 versus H1 one may arrive at the correct decision or may
commit one of the following two kinds of errors :

- Type I error : rejecting H0 when H0 is true

- Type II error : not rejecting H0 when H0 is false.
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Associated with any test there are two functions which describe the probabilities of these
errors :

- Type I error probability : described by a function α(.) on Θ0 :

α(θ) = Pθ(X∼ ∈ R) , for θ ∈ Θ0

[ = Eθ(φ(X∼ )) , for θ ∈ Θ0].

- Type II error probability : described by a function β(.) on Θ1 :

β(θ) = Pθ(X∼ ∈ R
c) , for θ ∈ Θ1

= 1− Pθ(X∼ ∈ R) , for θ ∈ Θ1

[ = 1− Eθ(φ(X∼)) , for θ ∈ Θ1].

The number 1 − β(θ1), for some θ1 ∈ Θ1, is called the power of the test against the
alternative θ1.
Both power and type I error probability are contained in the power function of the test.

Definition

The power function of a test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 is defined for all
θ ∈ Θ = Θ0 ∪Θ1 as :

π(θ) = Pθ(X∼ ∈ R) , for θ ∈ Θ

[ = Eθ(φ(X∼)) , for θ ∈ Θ].

Note that, if θ ∈ Θ0, then π(θ) = α(θ) = the probability of a type I error and if θ ∈ Θ1,
then π(θ) = 1− β(θ) = 1− the probability of a type II error.

It is natural to aim first for a test whose type I and type II error probabilities are zero.
This is usually impossible. Taking R = the empty set (i.e. never reject H0) gives α(θ) = 0
and β(θ) = 1. Taking R = X (i.e. always reject H0) makes β(θ) = 0 and α(θ) = 1.
Therefore we are going to keep these probabilities at an acceptable small level.

The proposal of Neyman and Pearson is as follows :

- control the type I error probability by specifying some small number 0 < α < 1 and
requiring that it should be ≤ α for all θ ∈ Θ0 :

α(θ) ≤ α , for all θ ∈ Θ0.

We say that the test has significance level α or that the test is a level-α test.
Having prescribed α in advance, it is not always the case that this upper bound for
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α(θ) is attained for some θ ∈ Θ0.
The number

sup
θ∈Θ0

α(θ)

is called the size of the test.

- Next we try to arrive at an optimum test. Having restricted to tests of level α, we
will select within this class on the basis of the type II error probability β(θ), or
equivalently the power function π(θ) = 1 − β(θ). The problem is to select the test
so as to maximize the power π(θ) for all θ ∈ Θ1, subject to the condition : α(θ) ≤ α
for all θ ∈ Θ0.

Q
0

Q
1

q

p(q)

a { {
The difficulty that arises here is the following : typically, the test that maximizes the
power against a certain alternative in Θ1, depends on this alternative.
There is one important exception : if Θ1 is simple. If Θ1 is composite, it may also turn
out that the same test maximizes the power for all alternatives in Θ1. This will be called
a uniformly most powerful (UMP) test.

Note
The choice of the significance level α is done by the statistician. Typical choices are :
α = 0.05, α = 0.01, . . .
If the test is based on a test statistic, then an alternative way of presenting the result of
a statistical test is by reporting the p-value of the test.
The p-value (probability value) of a test of a null hypothesis H0 : θ = θ0 is the probabil-
ity, under H0, of obtaining the observed value of the test statistic or a value that is more
extreme in the direction of the alternative hypothesis.

The less the p-value, the less reason there is to believe that H0 is true. The p-value is
commonly used in scientific reporting (e.g. “p ≤ 0.05”, . . .) and it is also used in the out
prints of statistical computer packages.
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If Tn = t(X1, . . . , Xn) is the test statistic and if the critical region of the test is of the form
{x∼ | t(x1, . . . , xn) ≥ c}, then, for an observed sample x∗1, . . . x

∗
n, the p-value is

Pθ0(Tn ≥ t(x∗1, . . . , x∗n)).

If H0 : θ ∈ Θ0 is composite, then the p-value is

sup
θ∈Θ0

Pθ(Tn ≥ t(x∗1, . . . , x∗n)).

Similarly for the other types of critical regions.

4.3 Simple hypotheses versus simple alternative

If the statistical hypothesis completely specifies about the distribution, then it is referred
to as simple hypothesis, other wise it is called composite hypothesis. Regarding the
composite hypothesis, we will discuss about it in the next section detail.

Here our objective is to infer about the parent population from which our samples came
from. We assume that we have a sample that came from one of two completely specified
distributions. The aim here is to indicate from which population the samples came from.
More precisely, assume that a random sample X1, . . . , Xn came from f0(x) or f1(x) and
we want to test Ho : Xi is distributed as f0(.) versus H1 : Xi is distributed as f1(.).

If we had only one observation say x1, one might quite rationally decide that the observa-
tion came from f0(.) if f0(x1) > f1(x1), and conversely, decide that the observation came
from f1(.) if f1(x1) > f0(x1). This simple intuitive method of obtaining a test can be
expanded in to a family of tests that, as we will consider will contain some good tests.

Definition Simple likelihood ratio-test

Let X1,. . . ,Xn be a random sample from either f0(.) or f1(.). A test φ∗ of H0: Xi ∼ f0(.)
versus H1: Xi ∼ f1(.) is defined to be a simple likelihood ratio-test if φ∗ is defined by:
Reject H0, if λ > k,
Accept H1, if λ < k,
Either accept or reject H0 or randomize if λ = k,
Where

λ = λ(x1, . . . , xn)

=

n∏
i=1

f1(xi)

n∏
i=1

f0(xi)
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=
L1(x1, . . . , xn)

L0(x1, . . . , xn)

and k is a non-negative constant. Lj = Lj(x1, . . . , xn) for j = 0, 1 is the likelihood func-
tion for sampling from the density fj(.).

4.3.1 Most powerful test

Suppose Θ = {θ0, θ1}, Θ0 = {θ0}, Θ1 = {θ1}. Hence :

H0 : θ = θ0

H1 : θ = θ1.

This case is not very useful in practice, but this simplest possible situation illustrates the
theory.

How to obtain a test ?

Heuristically : if we have observations x∼ = (x1, . . . , xn) and we have to decide whether
they come from density f(.; θ0) or from density f(.; θ1), then an intuitive reasoning says
that we should reject H0 if it is more likely that the sample came from f(.; θ1) than from
f(.θ0). That is, we have to compare the likelihood functions

L(θ1;x∼) =
n∏
i=1

f(xi; θ1) and L(θ0;x∼) =
n∏
i=1

f(xi; θ0)

and reject H0 if

L(θ0;x∼)

L(θ1;x∼)
is sufficiently small.

How to define a ‘best’ test ?

Definition

A test φ∗ of H0 : θ = θ0 versus H1 : θ = θ1 is a most powerful (MP) test of size α
(0 < α < 1) if

i) πφ∗(θ0) = α
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ii) πφ∗(θ1) ≥ πφ(θ1), for any other test φ with πφ(θ0) ≤ α.

Hence : a test φ∗ is MP of size α if it has size α, and if, among all other tests of size ≤ α,
it has the largest power.

The key result on MP tests in the lemma of Neyman and Pearson. We shall first state
and prove a limited version, nl. for nonrandomized tests.

Lemma [Neyman - Pearson]

Let X1, . . . , Xn be a random sample from X with density f(x; θ), θ ∈ Θ = {θ0, θ1}. Let
0 < α < 1.
Consider the testing problem : H0 : θ = θ0 versus H1 : θ = θ1.
Suppose that there exists a test with critical region R∗ of the form

R∗ =

x∼ |
n∏
i=1

f(xi; θ1)

n∏
i=1

f(xi; θ0)

≥ k


for some k ≥ 0 and such that

Pθ0(X∼ ∈ R
∗) = α

Then this test is MP.

Proof

Consider any other test, with critical region R and with

Pθ0(X∼ ∈ R) ≤ α

Then, we have to show that Pθ1(X∼ ∈ R
∗) ≥ Pθ1(X∼ ∈ R).

We give the proof for the case of density functions. The same proof holds for discrete
densities if we replace integrals by sums.
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x
1

x
2

xn

R R*

Pθ1(X∼ ∈ R
∗)− Pθ1(X∼ ∈ R)

=
∫
. . .
∫

R∗

n∏
i=1

f(xi; θ1)dx1 . . . dxn −
∫
. . .
∫

R

n∏
i=1

f(xi; θ1)dx1 . . . dxn

=
∫
. . .
∫

R∗ ∩Rc

n∏
i=1

f(xi; θ1)dx1 . . . dxn −
∫
. . .
∫

R ∩R∗c

n∏
i=1

f(xi; θ1)dx1 . . . dxn

Since
n∏
i=1

f(xi; θ1) ≥ k
n∏
i=1

f(xi; θ0) on R∗∩Rc and
n,∏
i=1

f(xi; θ1) < k
n∏
i=1

f(xi; θ0) on R∩R∗c,

we have

Pθ1(X∼ ∈ R
∗)− Pθ1(X∼ ∈ R)

≥ k


∫
. . .
∫

R∗ ∩Rc

n∏
i=1

f(xi; θ0)dx1 . . . dxn −
∫
. . .
∫

R ∩R∗c

n∏
i=1

f(xi; θ0)dx1 . . . dxn



= k


∫
. . .
∫

R∗

n∏
i=1

f(xi; θ0)dx1 . . . dxn −
∫
. . .
∫

R

n∏
i=1

f(xi; θ0)dx1 . . . dxn


= k

[
Pθ0(X∼ ∈ R

∗)− Pθ0(X∼ ∈ R)
]
≥ 0,

since Pθ0(X∼ ∈ R
∗) = α and Pθ0(X∼ ∈ R) ≤ α. �
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Note
The Neyman-Pearson lemma indicates how to choose k : if possible we should choose k
such that

Pθ0


n∏
i=1

f(Xi; θ1)

n∏
i=1

f(Xi; θ0)

≥ k

 = α .

In the examples below we illustrate how to do this. In discrete variable problems, this is
not always possible (see below).

Example [mean of normal with known variance]
X1, . . . , Xn : random sample from X ∼ N(µ;σ2) with σ2 known.
H0 : µ = µ0

H1 : µ = µ1 (where µ1 > µ0).

We have :
n∏
i=1

f(xi;µ1)

n∏
i=1

f(xi;µ0)

= e

µ1 − µ0

σ2

n∑
i=1

xi + n
µ2

0 − µ2
1

2σ2

.

Hence

R∗ =

x∼ |
n∏
i=1

f(xi;µ1)

n∏
i=1

f(xi;µ0)

≥ k


=

{
x∼ |

µ1 − µ0

σ2

n∑
i=1

xi + n
µ2

0 − µ2
1

2σ2
≥ k′

}
, for some k′

= {x∼ | x ≥ k
′′}, for some k′′.

Hence :

Pµ0


n∏
i=1

f(Xi;µ1)

n∏
i=1

f(Xi;µ0)

≥ k

 = α

⇔ Pµ0(X ≥ k′′) = α

⇔ Pµ0

X − µ0√
σ2

n

≥ k′′ − µ0√
σ2

n

 = α
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⇔ 1− Φ

k′′ − µ0√
σ2

n

 = α, since X ∼ N
(
µ0;

σ2

n

)
if H0 is true

⇔ k′′ − µ0√
σ2

n

= Φ−1(1− α) = z1−α

⇔ k′′ = µ0 + z1−α

√
σ2

n

Conclusion : R∗ =

{
x∼ | x ≥ µ0 + z1−α

√
σ2

n

}
is the critical region of a MP test of

H0 : µ = µ0 versus H1 : µ = µ1 (µ1 > µ0).

Example [Variance of normal with known mean]
X1, . . . , Xn : random sample from X ∼ N(µ;σ2) with µ known.
H0 : σ = σ0

H1 : σ = σ1 (where σ1 < σ0).

We have :
n∏
i=1

f(xi;σ1)

n∏
i=1

f(xi;σ0)

=

(
σ0

σ1

)n
e

−
1

2

(
1

σ2
1

− 1

σ2
0

) n∑
i=1

(xi − µ)2

Hence

Pσ0


n∏
i=1

f(Xi;σ1)

n∏
i=1

f(Xi;σ0)

≥ k

 = α

⇔ Pσ0

(
n∑
i=1

(Xi − µ)2 ≤ k′
)

= α, for some k′

⇔ Pσ0

(
n∑
i=1

(
Xi − µ
σ0

)2

≤ k′

σ2
0

)
= α.

Since under H0 :
n∑
i=1

(
Xi − µ
σ0

)2

∼ χ2(n), we have :
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Conclusion : R∗ =

{
x∼ |

n∑
i=1

(xi − µ)2 ≤ χ2
n;α.σ

2
0

}
is the critical region of a MP test of

H0 : σ = σ0 versus H1 : σ = σ1 (σ1 < σ0).

Example [Exponential]
X1, . . . , Xn : random sample from X ∼ Exp(θ).
H0 : θ = θ0

H1 : θ = θ1 (where θ1 > θ0).

We have :
n∏
i=1

f(xi; θ1)

n∏
i=1

f(xi; θ0)

=

(
θ1

θ0

)n
e

−(θ1−θ0)

n∑
i=1

xi

.

Hence

Pθ0


n∏
i=1

f(Xi; θ1)

n∏
i=1

f(xi; θ0)

≥ k

 = α

⇔ Pθ0

(
n∑
i=1

Xi ≤ k′
)

= α, for some k′.

Since under H0 :
n∑
i=1

Xi ∼ Γ(n;
1

θ0
), we have :

Conclusion : R∗ =

{
x∼ |

n∑
i=1

xi ≤ c

}
with c such that

c∫
0

θn0
Γ(n)

xn−1e−θ0xdx = α

is the critical region of a MP test of H0 : θ = θ0 versus H1 : θ = θ1 (θ1 > θ0).

Example [Bernoulli]

X1, . . . , Xn : random sample from X ∼ B(1; θ).
H0 : θ = θ0
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H1 : θ = θ1 (where θ1 < θ0)

We have :
n∏
i=1

f(xi; θ1)

n∏
i=1

f(xi; θ0)

=

(
1− θ1

1− θ0

)n(θ1(1− θ0)

θ0(1− θ1)

) n∑
i=1

xi

Since θ1 < θ0, this is a decreasing function of
n∑
i=1

xi and hence the problem of finding a k

such that

Pθ0


n∏
i=1

f(Xi; θ1)

n∏
i=1

f(Xi; θ0)

≥ k

 = α

is equivalent to that of finding k′ such that

Pθ0

(
n∑
i=1

Xi ≤ k′
)

= α

If H0 is true, then
n∑
i=1

Xi ∼ B(n; θ0).

For a given α, it is not always possible to find a value of k′ such that this is true.

Example : n = 3, θ0 =
3

4
, θ1 =

1

4
, α = 0.05.

The B(3;
3

4
) distribution is given by

0 1 2 3

0.0156 0.1416 0.4219 0.4219

.

Hence :

- if 0 ≤ k′ < 1 : Pθ0

(
3∑
i=1

Xi ≤ k′
)

= Pθ0

(
3∑
i=1

Xi = 0

)
= 0.0156 < 0.05

- if 1 ≤ k′ < 2 : Pθ0

(
3∑
i=1

Xi ≤ k′
)

= 0.0156 + 0.1416 > 0.05.
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Example [Poisson]
X1, . . . , Xn : random sample from X ∼ Poisson (λ).
H0 : λ = λ0

H1 : λ = λ1 (where λ1 > λ0).

We have :
n∏
i=1

f(xi;λ1)

n∏
i=1

f(xi;λ0)

=

(
λ1

λ0

) n∑
i=1

xi

e−n(λ1−λ0).

Since λ1 > λ0, this is an increasing function of
n∑
i=1

xi and hence

Pλ0


n∏
i=1

f(Xi;λ1)

n∏
i=1

f(Xi;λ0)

≥ k

 = α

⇔ Pλ0

(
n∑
i=1

Xi ≥ k′
)

= α, for some k′.

⇔
∞∑
r=k′

e−nλ0
(nλ0)r

r!
= α, since under H0 :

n∑
i=1

Xi ∼ Poisson (nλ0).

For a given α, it is not always possible to find a value of k′ such that this equality holds.

Example : n = 10, λ0 = 0.4, α = 0.05.
From tables of the Poisson distribution

∞∑
r=8

e−4 4r

r!
= 0.0511 > 0.05

∞∑
r=9

e−4 4r

r!
= 0.0214 < 0.05.

To overcome the difficulty with discrete distributions (as in the last two examples) we have
to introduce randomized tests (see definition in section 1). If we do so, we can prove a
more general version of the Neyman-Pearson lemma which says that there always exists
a MP test of size α for a simple H0 versus a simple H1. The randomization is done to get
the size equal to α.
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Lemma [Neyman-Pearson]

Let X1, . . . , Xn be a random sample from X with density f(x; θ), θ ∈ Θ = {θ0, θ1}. Let
0 < α < 1.
Consider the testing problem : H0 : θ = θ0 versus H1 : θ = θ1. Consider the test with
critical function

φ(x∼) =



1 . . . if
n∏
i=1

f(xi; θ1) > k
n∏
i=1

f(xi; θ0)

γ . . . =

0 . . . <

where the constants γ (0 ≤ γ ≤ 1) and k ≥ 0 are determined such that

Eθ0 [φ(X∼ )] = α.

Then this test is MP.

Example [Bernoulli]

In the Bernoulli example before, the MP test of H0 : θ =
3

4
versus H1 : θ =

1

4
would be :

if
3∑
i=1

xi = 0 . . . reject H0

if
3∑
i=1

xi = 1 . . .
reject H0 with probability 0.245

accept H0 with probability 0.755

if
3∑
i=1

xi > 1 . . . accept H0

i.e. with x∼= (x1, x2, x2) :

φ(x∼) =



1 . . . if
∑
xi = 0

0.245 . . . if
∑
xi = 1

0 . . . if
∑
xi > 1

.
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The number 0.245 has been calculated as to have a type I error probability of exactly 0.05
:

Eθ0 [φ(X∼ )]

= Pθ0(
3∑
i=1

Xi = 0) + γPθ0(
3∑
i=1

Xi = 1)

= 0.0156 + γ 0.1406

= 0.05 . . . if γ =
0.05− 0.0156

0.1406
= 0.245.

Note

Randomization is usually not done in practice. Mostly, one changes the α to some level
for which a non randomized Neyman-Pearson test can be found.

4.3.2 Minimax and Bayes test

Instead of using the power to set the goodness of the test we could also use a loss function.

Let X1, . . . , Xn be a random sample from X with density f(x; θ), θ ∈ Θ = {θ0, θ1}.
Consider the testing problem.

H0 : θ = θ0 versus H1 : θ = θ1.

Let d0 be the decision that the observed sample comes from f(x; θ0) and let d1 be the
decision that the observed sample comes from f(x; θ1).

A non randomized test with critical region R can be seen as a decision function δ with

δ(x1, . . . , xn) =


d1 . . . if (x1, . . . , xn) ∈ R

d0 . . . if (x1, . . . , xn) ∈ Rc.

Suppose that a certain loss function l(θ; δ(x1, . . . , xn) has been chosen. Then
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l(θ; δ(x1, . . . , xn)) =


l(θ; d1) . . . if (x1, . . . , xn) ∈ R

l(θ; d0) . . . if (x1, . . . , xn) ∈ Rc.

In the case that θ can assume only two values θ0 and θ1,

l(θ0; d1) = the loss when decision d1 is made and θ0 is the true parameter
l(θ1; d1) = 0
l(θ0; d0) = 0
l(θ1; d0) = the loss when decision d0 is made and θ1 is the true parameter.

For a test with critical region R, we define the risk function of the test as the average
loss, i.e.

R(θ; δ) = Eθ[l(θ; δ(X1, . . . , Xn))]

=


∑
. . .
∑
l(θ; δ(x1 . . . xn)

n∏
i=1

f(xi; θ)∫
. . .
∫
l(θ; δ(x1, . . . , xn))

n∏
i=1

f(xi; θ)dx1 . . . dxn

=



∑
. . .
∑

R

l(θ; d1)
n∏
i=1

f(xi; θ) +
∑
. . .
∑

Rc

l(θ; d0)
n∏
i=1

f(xi; θ)

∫
. . .
∫

R

l(θ; d1)
n∏
i=1

f(xi; θ)dx1 . . . dxn +
∫
. . .
∫

Rc

l(θ; d0)
n∏
i=1

f(xi; θ)dx1 . . . dxn

= l(θ; d1)Pθ(X∼ ∈ R) + l(θ; d0)Pθ(X∼ ∈ R
c)

= l(θ; d1)π(θ) + l(θ; d0)(1− π(θ))

where π is the power function of the test.
Since θ can only assume two values (θ0 and θ1), the risk function can only assume two
values :
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R(θ0; δ) = l(θ0; d1)π(θ0)

R(θ1; δ) = l(θ1; d0)(1− π(θ1)).

It is usually impossible to find a test which minimizes the risk function uniformly.
For two tests δ and δ′ we typically have the following situation :

*

*

q0 q1

R(q0;d')

R(q
0
;d)

R(q1;d)

R(q1;d')

·

·

A first way to define a ‘good’ test is to look for a test that minimizes the largest value of
the risk function :

Definition

A test δ for H0 : θ = θ0 versus H1 : θ = θ1 is a minimax test if

max{R(θ0; δ), R(θ1; δ)} ≤ max{R(θ0; δ′), R(θ1; δ′)}

for any other test δ′.

A second way to define a ‘good’ test is to look for a test that minimizes the Bayes risk,
i.e. the average of R(θ; δ) over θ, using a prior density over the parameter space.

In our case the prior density is the density of a discrete random variable Θ
∼

with two values
θ0 and θ1. It is completely determined by

p = P (Θ
∼

= θ1)(= 1− P (Θ
∼

= θ0)).

The Bayes risk is given by

R(δ) = (1− p)R(θ0; δ) + pR(θ1; δ).
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Definition

A test δ for H0 : θ = θ0 versus H1 : θ = θ1 is a Bayes test with respect to the prior

distribution given by p = P (Θ
∼

= θ1) if

(1− p)R(θ0; δ) + pR(θ1; δ) ≤ (1− p)R(θ0; δ′) + pR(θ1; δ′)

for any other test δ′.

Theorem

The Bayes test for H0 : θ = θ0 versus H1 : θ = θ1 with respect to the prior distribution

given by p = P (Θ
∼

= θ1) has critical region given by

R =

(x1, . . . , xn) |

n∏
i=1

f(xi; θ1)

n∏
i=1

f(xi; θ0)

≥ (1− p)l(θ0; d1)

pl(θ1; d0)



Proof (continuous case)

R(δ) = (1− p)R(θ0; δ) + pR(θ1; δ)

= (1− p)l(θ0; d1)π(θ0) + pl(θ1; d0)(1− π(θ1))

= (1− p)l(θ0; d1)
∫
. . .
∫ n∏

i=1

f(xi; θ0)dx1 . . . dxn

+pl(θ1; d0)

1− ∫
. . .
∫

R

n∏
i=1

f(xi; θ1)dx1 . . . dxn


= pl(θ1; d0)

+
∫
. . .
∫

R

[(1− p)l(θ0; d1)
n∏
i=1

f(xi; θ0)− pl(θ1; d0)
n∏
i=1

f(xi; θ1)]dx1 . . . dxn
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and this is minimized if the region R is defined to be all (x1, . . . , xn) for which the inte-
grand is negative. �

4.4 Testing composite hypothesis

We now turn to the more general hypothesis testing problem,
that of testing composite hypothesis. We assume that we have
a random sample from f(x; θ), θ ∈ Θ, and we want to test:
H0: θ ∈ Θ0 versus
H1: θ ∈ Θ1

where Θ0 ⊂ Θ,Θ1 ⊂ Θ and Θ0

and Θ1 are disjoint. Usually, Θ1 = Θ−Θ0.
To perform such tests we use the generalized likelihood ratio test and it
will be described as follows.

4.4.1 Generalized likelihood ratio tests

In the previous section, we considered the problem of testing a simple H0 versus a simple
H1.
From the Neyman-Pearson lemma we know that the most powerful test rejects H0 if the
simple likelihood ratio function

L(θ1;x∼)

L(θ0;x∼)
=

n∏
i=1

f(xi; θ1)

n∏
i=1

f(xi; θ0)

is too large.

For a more general testing problem

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 = Θ\Θ0

where Θ0 and Θ1 contain more than one point each, the above idea could lead to the
consideration of the ratio

sup
θ∈Θ1

L(θ;x∼)

sup
θ∈Θ0

L(θ;x∼)
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or the closely related ratio

sup
θ∈Θ

L(θ;x∼)

sup
θ∈Θ0

L(θ;x∼)
.

It is more convenient to work with a ratio with values between 0 and 1 rather than between
1 and +∞. Therefore we invert this ratio to

sup
θ∈Θ0

L(θ;x∼)

sup
θ∈Θ

L(θ;x∼)

Also, we allow θ to be a vector of parameters : θ∼= (θ1, . . . , θk).
We finally arrive at the following definition.

Definition

The generalized likelihood ratio function for a null hypothesis H0 : θ∼ ∈ Θ0 is defined
by

λ(x∼) = λ(x1, . . . , xn) =

sup
θ∼∈Θ0

L(θ∼;x∼)

sup
θ∼∈Θ

L(θ∼;x∼)
.

The corresponding statistic

Λn = λ(X1, . . . , Xn)

is called the generalized likelihood ratio statistic.

Notes :

(1) We have that 0 ≤ λ ≤ 1.

(2) if Θ0 = {θ0} and Θ1 = {θ1}, then the generalized likelihood ratio function does not
reduce to the simple likelihood ratio function.

(3) For the denominator we have :

sup
θ∼∈Θ

L(θ∼;x∼) = L(θ
∧
∼n;x∼)
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where θ
∧
∼n is the ML-estimate for θ∼.

If H0 is not true, then it is intuitively clear that the numerator in λ(x∼) will tend to be
small, so that λ(x∼) will be small. Hence it is reasonable to use this as a test procedure :

Definition

A generalized likelihood ratio test for the null hypothesis H0 : θ∼ ∈ Θ0, is a test which
rejects H0 if and only if λ(x∼) is small.

The critical region of such a test has the form

{x∼ | λ(x∼) ≤ λ0}

where λ0 is some fixed constant, 0 < λ0 < 1.

If we want a size-α test, then the constant λ0 has to be determined such that

sup
θ∼∈Θ0

Pθ∼
(Λn ≤ λ0) = α

where Λn is the generalized likelihood ratio statistic.

Very often one uses the large sample limiting distribution of Λn (see below). This provides
tests with approximate size α.

4.4.2 Examples generalized likelihood ratio tests

Example [Mean of normal with known variance]

X1, . . . , Xn : random sample from X ∼ N(µ;σ2) with σ2 known.
H0 : µ = µ0

H1 : µ 6= µ0.
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We have : L(µ;x∼) =

(
1

σ
√

2π

)n
e

−
1

2σ2

n∑
i=1

(xi − µ)2

Θ = IR , Θ0 = {µ0}.

sup
µ∈IR

L(µ;x∼) =

(
1

σ
√

2π

)n
e

−
1

2σ2

n∑
i=1

(xi − x)2

λ(x∼) =
e

−
1

2σ2

n∑
i=1

(xi − µ0)2

e

−
1

2σ2

n∑
i=1

(xi − x)2

= e
−
n

2σ2
(x− µ0)2

.

Generalized likelihood ratio test :

reject H0 if and only if e
−
n

2σ2
(x− µ0)2

≤ λ0 (0 < λ0 < 1)

or equivalently,

reject H0 if and only if

∣∣∣∣∣ x− µ0√
σ2/n

∣∣∣∣∣ ≥ c.
To set the level equal to α, we choose c such that Pµ0

(∣∣∣∣∣X − µ0√
σ2/n

∣∣∣∣∣ ≥ c
)

= α. Since, under

H0,
X − µ0√

σ2

n

∼ N(0; 1), we have c = z1−α/2.

Example [Exponential]

X1, . . . , Xn : random sample from X ∼ Exp(θ).
H0 : θ ≤ θ0

H1 : θ > θ0.

We have : L(θ;x∼) = θne
−θ

n∑
1
xi

Θ = {θ | θ > 0} , Θ0 = {θ | θ ≤ θ0}
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sup
θ∈Θ

L(θ;x∼) =

(
n∑
xi

)n
e−n

sup
θ∈Θ0

L(θ;x∼) =



(
n∑
xi

)n
e−n . . . if

n∑
xi
≤ θ0

θn0 e
−θ0

∑
xi . . . if

n∑
xi
> θ0

λ(x∼) =



1 . . . if
n∑
xi
≤ θ0

θn0 e
−θ0

∑
xi(

n∑
xi

)n
e−n

. . . if
n∑
xi
> θ0

.

Generalized likelihood ratio test :

reject H0 if and only if
n∑
xi
> θ0 and

(
θ0
∑
xi

n

)n
e−θ0

∑
xi+n ≤ λ0

for some 0 < λ0 < 1.

Or, with x =

∑
xi
n

:

reject H0 if and only if θ0x < 1 and (θ0x)ne−n(θ0x−1) ≤ λ0.

Now : yne−n(y−1) is maximal for y = 1. Hence :

reject H0 if and only if θ0x ≤ c

where 0 < c < 1 is such that cne−n(c−1) = λ0.

To set the size equal to α we have to choose c such that

sup
θ∈Θ0

Pθ(θ0X ≤ c) = α

or : sup
0<θ≤θ0

Pθ

(
n∑
i=1

Xi ≤
nc

θ0

)
= α
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or : sup
0<θ≤θ0

nc

θ0∫
0

θn

Γ(n)
xn−1e−θxdx = α (since

n∑
i=1

Xi ∼ Γ(n;
1

θ
))

or : sup
0<θ≤θ0

ncθ

θ0∫
0

1

Γ(n)
tn−1e−tdt = α

or : c has to satisfy the equation :
nc∫

0

1

Γ(n)
tn−1e−tdt = α.

Example [Mean of normal with unknown variance]

X1, . . . , Xn : random sample from X ∼ N(µ;σ2) with µ and σ2 unknown.
H0 : µ = µ0

H1 : µ 6= µ0

(where µ0 is known and σ2 is unspecified).

We have : θ∼= (µ, σ2)

L(θ∼;x∼) =

(
1

σ
√

2π

)n
e

−
1

2σ2

n∑
i=1

(xi − µ)2

Θ = {θ∼= (µ, σ2) | µ ∈ IR, σ2 > 0}

Θ0 = {θ∼= (µ, σ2) | µ = µ0, σ
2 > 0}

sup
θ∼∈Θ

L(θ∼;x∼) =

(
ne−1

2π
∑

(xi − x)2

)n
2

(replacing µ and σ2 by the ML estimates

x =
1

n

∑
xi and

1

n

∑
(xi − x)2)

Also, since

L((µ0, σ
2);x∼) =

(
1

σ
√

2π

)n
e
−

1

2σ2

∑
(xi − µ0)2
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we have

sup
θ∼∈Θ0

L(θ∼;x∼) =

(
ne−1

2π
∑

(xi − µ0)2

)n
2

Hence :

λ(x∼) =


n∑
i=1

(xi − x)2

n∑
i=1

(xi − µ0)2


n

2

or since

n∑
i=1

(xi − µ0)2 =
n∑
i=1

(xi − x)2 + n(x− µ0)2 :

λ(x∼) =
1(

1 +
n(x− µ0)2∑

(xi − x)2

)n
2

=
1(

1 +
t2(x∼)

n− 1

)n
2

where

t(x∼) =
x− µ0√∑
(xi − x)2

n(n− 1)

.

The generalized likelihood ratio test rejects H0 if and only if λ(x∼) is small or, equivalently
if and only if |t(x∼)| is large.

Under H0 : µ = µ0, the corresponding statistic

Tn = t(X1, . . . , Xn) =
X − µ0√∑
(Xi −X)2

n(n− 1)

=
X − µ0√

S2

n− 1

has a Student’s t distribution with (n− 1) degrees of freedom.

Conclusion : the size-α generalized likelihood ratio test of H0 : µ = µ0 versus H1 : µ 6= µ0

rejects H0 if and only if |t(x∼)| ≥ tn−1,1−α/2 , i.e.
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∣∣∣∣∣ x− µ0√
s2/n− 1

∣∣∣∣∣ ≥ tn−1,1−α/2.

This is called the two-sided t-test.

Note

The example can be modified to other testing problems, such as for instance :

H0 : µ ≤ µ0

H1 : µ > µ0.

Since now

Θ = {θ∼= (µ, σ2) | µ ∈ IR, σ2 > 0}
Θ0 = {θ∼= (µ, σ2) | µ ≤ µ0, σ

2 > 0},

we obtain :

λ(x∼) =



1 . . . if x ≤ µ0

1(
1 +

t2(x∼)

n− 1

)n
2

. . . if x ≥ µ0

This leads to : reject H0 if and only if

|t(x∼) | is large and x ≥ µ0

i.e. if and only if

x− µ0√
s2

n− 1

≥ tn−1,1−α.

This is called a one-sided t-test.
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Example [Variance of normal with unknown mean]
X1, . . . , Xn : random sample from X ∼ N(µ;σ2) with µ and σ2 unknown.
H0 : σ2 = σ2

0

H1 : σ2 6= σ2
0

(where σ2
0 is known and µ is unspecified).

Show that the generalized likelihood ratio function is given by

λ(x∼) =

(
w(x∼)

n

)n
2
e
−

w(x∼)

2
− n

2



where

w(x∼) =
1

σ2
0

n∑
i=1

(xi − x)2.

This is not a monotone function of w(x∼), but λ(x∼) has a single maximum. Therefore, a
generalized likelihood ratio test is given by : reject H0 if and only if

w(x∼) ≤ c1 or w(x∼) ≥ c2

To construct a size-α test, c1 and c2 have to be determined from the fact that the statistic

Wn = w(X1, . . . , Xn) =
1

σ2
0

n∑
i=1

(Xi −X)2

is χ2(n− 1) distributed under the null hypothesis.
This is called a two-sided chi-squared test.

Example [Comparing means]

Two independent samples :

X1, . . . , Xn1 : from X ∼ N(µ1;σ2
1)

Y1, . . . , Yn2 : from Y ∼ N(µ2;σ2
2)

Assume that σ2
1 = σ2

2 = σ2 (unknown).

We want to test :
H0 : µ1 = µ2
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H1 : µ1 6= µ2.

The joint density of X1, . . . , Xn1 , Y1, . . . , Yn2 is given by

(
1√
2π

)n1+n2 1

σn1
1

1

σn2
2

e

−
1

2σ2
1

n1∑
i=1

(xi − µ1)2 − 1

2σ2
2

n2∑
i=1

(yi − µ2)2

.

We have : θ∼= (µ1, µ2, σ
2)

L(θ∼;x∼, y∼) =

(
1√
2π

)n1+n2 1

σn1+n2
e

−
1

2σ2
[

n1∑
i=1

(xi − µ1)2 +

n2∑
i=1

(yi − µ2)2]

Θ = {θ∼= (µ1, µ2, σ
2) | µ1, µ2 ∈ IR, σ2 > 0}

Θ0 = {θ∼= (µ1, µ2, σ
2) | µ1 = µ2 ∈ IR, σ2 > 0}

One can calculate :

- the supremum of L over Θ is obtained for µ1 = x, µ2 = y, and

σ2 =
1

n1 + n2

[
n1∑
i=1

(xi − x)2 +

n2∑
i=1

(yi − y)2

]
and hence :

sup
θ∼∈Θ

L(θ∼;x∼, y∼) =

 (n1 + n2)e−1

2π

[
n1∑
i=1

(xi − x)2 +
n2∑
i=1

(yi − y)2

]

n1 + n2

2

.

- the supremum of L over Θ0 is obtained for µ1 = µ2 =
n1x+ n2y

n1 + n2
= µ
∧

and

σ2 =
1

n1 + n2

[
n1∑
i=1

(xi − µ
∧

)2 +

n2∑
i=1

(yi − µ
∧

)2

]
.

Hence :

sup
θ∼∈Θ0

L(θ∼;x∼, y∼) =

 (n1 + n2)e−1

2π

[
n1∑
i=1

(xi − µ
∧

)2 +
n2∑
i=1

(yi − µ
∧

)2

]

n1 + n2

2

.
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It follows that :

λ(x∼, y∼) =


n1∑
i=1

(xi − x)2 +
n2∑
i=1

(yi − y)2

n1∑
i=1

(xi − µ
∧

)2 +
n2∑
i=1

(yi − µ
∧

)2


n1 + n2

2

.

But :

n1∑
i=1

(xi − µ
∧

)2 +

n2∑
i=1

(yi − µ
∧

)2

=

n1∑
i=1

(xi − x+ x− µ
∧

)2 +

n2∑
i=1

(yi − y + y − µ
∧

)2

=

n1∑
i=1

(xi − x)2 +

n2∑
i=1

(yi − y)2 + n1(x− µ
∧

)2 + n2(y − µ
∧

)2

=

n1∑
i=1

(xi − x)2 +

n2∑
i=1

(yi − y)2 +
n1n2

n1 + n2
(x− y)2.

Hence :

λ(x∼, y∼) =

1 +

n1n2

n1 + n2
(x− y)2

n1∑
i=1

(xi − x)2 +
n2∑
i=1

(yi − y)2


−
n1 + n2

2

=

(
1 +

t2(x∼, y∼)

n1 + n2 − 2

)−n1 + n2

2

where

t(x∼, y∼) =
x− y√

s2
p

(
1

n1
+

1

n2

) , s2
p =

n1∑
i=1

(xi − x)2 +
n2∑
i=1

(yi − y)2

n1 + n2 − 2
.

The test rejects H0 if and only if λ(x∼, y∼) is small, i.e. if and only if |t(x∼, y∼)| is large.
The corresponding statistic is
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Tn = t(X1, . . . , Xn1 , Y1, . . . , Yn2) =
X − Y√

S2
p

(
1

n1
+

1

n2

)

(where S2
p =

n1S
2
1 + n2S

2
2

n1 + n2 − 2
) and under H0 it is t(n1 + n2 − 2)-distributed.

This is called the two-sample t-test.

Example [Comparing variances]
Two independent samples

X1, . . . , Xn1 : from X ∼ N(µ1;σ2
1)

Y1, . . . , Yn2 : from Y ∼ N(µ2;σ2
2)

We want to test :

H0 :
σ2

2

σ2
1

= τ

H1 :
σ2

2

σ2
1

6= τ

(where τ is known; µ1, µ2, σ
2
1, σ

2
2 unspecified).

We have : θ∼= (µ1, µ2, σ
2
1, σ

2
2)

L(θ∼;x∼, y∼) =

(
1√
2π

)n1+n2 1

σn1
1

1

σn2
2

e

−
1

2σ2
1

n1∑
i=1

(xi − µ1)2

e

−
1

2σ2
2

n2∑
i=1

(yi − µ2)2

Θ = {θ∼= (µ1, µ2, σ
2
1, σ

2
2) | µ1, µ2 ∈ IR, σ2

1 > 0, σ2
2 > 0}

Θ0 = {θ∼= (µ1, µ2, σ
2
1, σ

2
2) | µ1, µ2 ∈ IR, σ2

2 = τσ2
1}

One finds :

sup
θ∼∈Θ

L(θ∼;x∼, y∼) =

(
1√
2π

)n1+n2

 n1e
−1

n1∑
i=1

(xi − x)2


n1

2
 n2e

−1

n2∑
i=1

(yi − y)2


n2

2
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sup
θ∼∈Θ0

L(θ∼;x∼, y∼) =

(
1√
2π

)n1+n2 1

τ

n2

2

 (n1 + n2)e−1

n1∑
i=1

(xi − x)2 +
1

τ

n2∑
i=1

(yi − y)2


n1 + n2

2

λ(x∼, y∼) =
(n1 + n2)

n1 + n2

2

n

n1

2
1 n

n2

2
2

1

τ

n2∑
i=1

(yi − y)2

n1∑
i=1

(xi − x)2


n2

2

1 +
1

τ

n2∑
i=1

(yi − y)2

n1∑
i=1

(xi − x)2


n1 + n2

2

.

Or, with

f(x∼, y∼) =

n2∑
i=1

(yi − y)2/(n2 − 1)

τ
n1∑
i=1

(xi − x)2/(n1 − 1)

:

λ(x∼, y∼) =
(n1 + n2)

n1 + n2

2

n

n1

2
1 n

n2

2
2

(
n2 − 1

n1 − 1
f(x∼, y∼)

)n2

2

(
1 +

n2 − 1

n1 − 1
f(x∼, y∼)

)n1 + n2

2

.

The test rejects H0 if and only if λ(x∼, y∼) is small, i.e. if and only if

(
n2 − 1

n1 − 1
f(x∼, y∼)

)n2

2

(
1 +

n2 − 1

n1 − 1
f(x∼, y∼)

)n1 + n2

2

is small.

Since this, as a function of f(x∼, y∼), has a single maximum, the test is given by : reject H0

if and only if

f(x∼, y∼) ≤ c1 or f(x∼, y∼) ≥ c2.

To construct a size-α test, c1 and c2 have to be determined from the fact that the statistic
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Fn = f(X1, . . . , Xn1 , Y1, . . . , Yn2) =

n2∑
i=1

(Yi − Y )2/(n2 − 1)

τ
n1∑
i=1

(Xi −X)2/(n1 − 1)

=

n2∑
i=1

(Yi − Y )2

σ2
2

/(n2 − 1)

n1∑
i=1

(Xi −X)2

σ2
1

/(n1 − 1)

(under H0 :
σ2

2

σ2
1

= τ)

has a F (n2 − 1;n1 − 1)-distribution.

This is called an F -test.

4.4.3 Uniformly most powerful tests

The search for an optimum test is more difficult in the case of composite hypotheses.
The reason is that, if Θ1 contains more than one element, we cannot simply compare the
numbers πφ(θ1) and take that test with the largest such number, but we must compare
functions πφ(θ), θ ∈ Θ1. Their graphs may ‘cross’ and not yield an uniformly best one.

We define an optimum property that such a test may possess.

Definition

A test φ∗ of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 = Θ\Θ0 is a uniformly most powerful
(UMP) test of size α (0 < α < 1) if

(i) sup
θ∈Θ0

πφ∗(θ) = α

(ii) πφ∗(θ) ≥ πφ(θ), for all θ ∈ Θ1, and for any other test φ with size ≤ α.

Hence : a test φ∗ is UMP of size α if it has size α and if among all other tests of size ≤ α,
it has the largest power function for all alternative values of θ.

Unfortunately it is not so often the case that a UMP test exists.
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Example [Mean of normal with known variance]

X1, . . . , Xn : random sample from X ∼ N(µ;σ2) with σ2 known.
H0 : µ = µ0

H1 : µ > µ0.

From a previous example we know that for every µ1 > µ0, the test with critical region

{
x∼ | x ≥ µ0 + z1−α

√
σ2

n

}

is MP for testing µ = µ0 againts µ = µ1.
But, since we get the same MP test for any value µ1 > µ0, this test is also UMP.

The power of this test :

π(µ) = Pµ(X∼ ∈ R) = Pµ(X ≥ µ0 + z1−α

√
σ2

n
)

= Pµ(X − µ ≥ µ0 − µ+ z1−α

√
σ2

n
)

= Pµ

X − µ√
σ2

n

≥ µ0 − µ√
σ2

n

+ z1−α


= 1− Φ

(
µ0 − µ√
σ2/n

+ z1−α

)
.

 1

a

m
0

m



4.4. TESTING COMPOSITE HYPOTHESIS 189

Example [Exponential]
X1, . . . , Xn : random sample from X ∼ Exp(θ).
H0 : θ = θ0

H1 : θ > θ0.

From a previous example we know that for every θ1 > θ0, the test with critical region

{
x∼ |

n∑
i=1

xi ≤ c

}
, with c such that

c∫
0

θn0
Γ(n)

xn−1e−θ0xdx = α

is MP for testing θ = θ0 against θ = θ1. Since this test does not depend on θ1, it is also
UMP.

A general theorem which sometimes can be used to find (one-sided) UMP tests is the
following.

Theorem

Let X1, . . . , Xn be a random sample from X with density f(x; θ), θ ∈ Θ = some interval.

If the ratio

n∏
i=1

f(xi; θ
′)

n∏
i=1

f(xi; θ′′)

is a nonincreasing

[nondecreasing]

function of t(x1, . . . , xn) for every θ′ < θ′′,

then

� UMP test of size α for H0 : θ ≤ θ0 versus H1 : θ > θ0 has critical region {x∼ | t(x1, . . . , xn) >

[<]

c}

with Pθ0(t(X1, . . . , Xn) >

[<]

c) = α
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� UMP test of size α for H0 : θ ≥ θ0 versus H1 : θ < θ0 has critical region {x∼ | t(x1, . . . , xn) <

[>]

c}

with Pθ0(t(X1, . . . , Xn) <

[>]

c) = α.

Example [Exponential]

n∏
i=1

f(xi; θ
′)

n∏
i=1

f(xi; θ′′)

=

(
θ′

θ′′

)n
e
−(θ′−θ′′)

n∑
i=1

xi
is monotone nondecreasing in

n∑
i=1

xi for every θ′ < θ′′.

4.5 Summary of tests on the parameters of a normal dis-
tribution

In this section we give some tables which summarize the customary procedures for testing
about mean and variance of a normal distribution (one sample problem) and comparison
of means or variances (two sample problem). The tests are generalized likelihood tests (or
slight modifications).

ONE SAMPLE PROBLEM
X1, . . . , Xn : random sample from X ∼ N(µ;σ2).
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TESTS ABOUT THE MEAN

σ2 known σ2 unknown

H0 H1 reject H0 if

µ ≤ µ0 µ > µ0 x ≥ µ0 + z1−α

√
σ2

n
x ≥ µ0 + tn−1,1−α

√
s2

n− 1

µ ≥ µ0 µ < µ0 x ≤ µ0 + z1−α

√
σ2

n
x ≤ µ0 + tn−1,1−α

√
s2

n− 1

µ = µ0 µ 6= µ0 |x− µ0| ≥ z1−α
2

√
σ2

n
|x− µ0| ≥ tn−1,1−α

2

√
s2

n− 1

x =
1

n

n∑
i=1

xi s2 =
1

n

n∑
i=1

(xi − x)2

TESTS ABOUT THE VARIANCE

µ known µ unknown

H0 H1 reject H0 if

σ ≤ σ0 σ > σ0

n∑
i=1

(xi − µ)2 ≥ χ2
n,1−ασ

2
0 s2 ≥ χ2

n−1,1−α
σ2

0

n

σ ≤ σ0 σ < σ0

n∑
i=1

(xi − µ)2 ≤ χ2
n,ασ

2
0 s2 ≤ χ2

n−1,α

σ2
0

n

σ = σ0 σ 6= σ0



n∑
i=1

(xi − µ)2 ≤ χ2
n,α/2σ

2
0

or

n∑
i=1

(xi − µ)2 ≥ χ2
n,1−α/2σ

2
0



s2 ≤ χ2
n−1,α/2

σ2
0

n

or

s2 ≥ χ2
n−1,1−α/2

σ2
0

n

TWO SAMPLE PROBLEM

Independent samples : X1, . . . , Xn1 : from X ∼ N(µ1;σ2
1)

Y1, . . . , Yn2 : from Y ∼ N(µ2;σ2
2).
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TESTS ABOUT THE DIFFERENCE OF THE MEANS

H0 H1 σ2
1, σ

2
2 known σ2

1, σ
2
2 unknown, σ2

1 = σ2
2

(δ : known) reject H0 if

µ2 − µ1 ≤ δ µ2 − µ1 > δ y − x ≥ δ + z1−α

√
σ2

1

n1
+
σ2

2

n2
y − x ≥ δ

+tn1+n2−2,1−α.sp

√
1

n1
+

1

n2

µ2 − µ1 ≥ δ µ2 − µ1 < δ y − x ≤ δ − z1−α

√
σ2

1

n1
+
σ2

2

n2
y − x ≤ δ

−tn1+n2−2,1−α.sp

√
1

n1
+

1

n2

µ2 − µ1 = δ µ2 − µ1 6= δ |y − x− δ| ≥ z1−α
2

√
σ2

1

n1
+
σ2

2

n2
|y − x− δ|

≥ tn1+n2−2,1−α
2
.sp

√
1

n1
+

1

n2

x =
1

n

n∑
i=1

xi y =
1

n2

n2∑
i=1

yi s2
1 =

1

n1

n1∑
i=1

(xi−x)2 s2
2 =

1

n2

n2∑
i=1

(yi−y)2 s2
p =

n1s
2
1 + n2s

2
2

n1 + n2 − 2

If the variances σ2
1 and σ2

2 are possibly unequal (Behrens - Fisher problem), then one
of the solutions is Welch’s t-test with rejection regions of the form :

y − x ≥ δ + t
ν
∧
,1−α

√
s2

1

n1 − 1
+

s2
2

n2 − 1

y − x ≤ δ − t
ν
∧
,1−α

√
s2

1

n1 − 1
+

s2
2

n2 − 1
with ν

∧
=

(
s1

n1 − 1
+

s2
2

n2 − 1

)2

1

n1

(
s2

1

n1 − 1

)2

+
1

n2 − 1

(
s2

2

n2 − 1

)2

|y − x− δ| ≥ t
ν
∧
,1−

α

2

√
s2

1

n1 − 1
+

s2
2

n2 − 1
rounded up to nearest integer
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TESTS ABOUT THE RATIO OF THE VARIANCES

H0 H1 µ1, µ2 known µ1, µ2 unknown

(τ : known) reject H0 if

σ2
2

σ2
1

≤ τ σ2
2

σ2
1

> τ

n2∑
i=1

(yi − y)2/n2

τ
n1∑
i=1

(xi − x)2/n1

≥ Fn2,n1;1α

n2

n2 − 1
s2

2

τ
n1

n1 − 1
s2

1

≥ Fn2−1,n1−1;1−α

σ2
2

σ2
1

≥ τ σ2
2

σ2
1

< τ

n2∑
i=1

(yi − y)2/n2

τ
n1∑
i=1

(xi − x)2/n1

≤ Fn2,n1;α

n2

n2 − 1
s2

2

τ
n1

n1 − 1
s2

1

≤ Fn2−1,n1−1;1−α

σ2
2

σ2
1

= τ
σ2

2

σ2
1

6= τ



n2∑
i=1

(yi − y)2/n2

τ
n1∑
i=1

(xi − x)2/n1

≤ Fn2,n1;α/2

or
n2∑
i=1

(yi − y)2/n2

τ
n1∑
i=1

(xi − x)2/n1

≥ Fn2,n1;1−α/2



n2

n2 − 1
s2

2

τ
n1

n1 − 1
s2

1

≤ Fn2−1,n1−1−α/2

or
n2

n2 − 1
s2

2

τ
n1

n1 − 1
s2

1

≥ Fn2−1,n1−1;1−α/2

Warning : the procedures for variances are very sensitive to departures from the normal-
ity assumptions.

4.6 Comparing several means

We assume that we have available k random samples, one from each k normal populations;
that is, Suppose X11, . . . , Xjnj be a random sample from the jth normal population. For
j = 1, 2, . . . , k. Assume that the jth population has mean µj and variance σ2. Further
assume that the k random samples are independent.

Our objective is to test the null hypothesis that all the population means are equal versus
the alternative proposes that not all the means are equal. That is:
H0: µ1=µ2=. . . =µk versus
H1: Not all µj′s are equal.
To test the proposed hypothesis, we consider generalized likelihood ratio-test.

L
(
µ1, . . . , µk, σ

2;x11, . . . , x1n1 , . . . , xk1, . . . , xknk
)
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=

k∏
j=1

nj∏
i=1

1√
2πσ2

e

−1
2

[
(xji−µj)

σj

]2

=
(
2πσ2

)−n
2 e

[
−1

2σ2

∑
j

∑
i(xji−µj)

2
]

where

n =
k∑
j=1

nj

The maximum likelihood estimates of µ1, . . . , µk, σ
2 are given by;

µ̂j = x̄j. =
1

n

nj∑
i=1

, j = 1, 2, . . . , k

σ̂2 =
1

n

k∑
j=1

nj∑
i=1

(xji − x̄j.)2

Hence,

L0 =

2π
∑
j

∑
i

(xji − x̄)2

n


−n
2

e−n

L1 =

2π
∑
j

∑
i

(xji − x̄j.)2

n


−n
2

e−n

The generalized likelihood ratio test is

λ =
L0

L1

=


∑
j

∑
i

(xji − x̄)2

∑
j

∑
i

(xji − x̄j.)2


−n
2

=


∑
j

∑
i

(xji − x̄j + x̄j − x̄)2

∑
j

∑
i

(xji − x̄)2


−n
2

=


∑
j

∑
i

(xji − x̄j)2 +
∑
j
nj (x̄j − x̄)2

∑
j

∑
i

(xji − x̄)2


−n
2
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=

1 +
k − 1

n− k

∑
j
nj(x̄j−x̄)2

k−1∑
j

∑
i

(xji−x̄j)2

n−k


−n
2

=

[
1 +

k − 1

n− k
r

]−n
2

where

r =

∑
j
nj(x̄j−x̄)2

k−1∑
j

∑
i

(xji−x̄j)2

n−k

A generalized likelihood-ratio test is described as follows:
Reject H0 if λ ≤ k, but λ ≤ k if and only if,
r ≥ c , where c is some constant.

Note The ratio r is sometimes referred to as the variance ratio or F -ratio.
The constant c is determined so that the test will have size α.
The two quantities both in numerator and denominator of r are independent
and if we divide both by the common variance, we have the ratio of two
independent chi-square distribution which gives us the F -distribution.
As a result we can choose the constant c is (1− α)th

quantile of the F -distribution with (k − 1) and (n− k) degrees of freedom.
Therefore, for large value of F , we have small value of the likelihood ratio,
that means they are inversely related. As a result we reject the null hypothesis
for small value of λ or for large value of F .

4.7 The relationship between two-sided tests of hypotheses
and confidence interval

Suppose X1, . . . , Xn, be a random sample from a normal population and consider testing
H0: µ = µ0 versus H1: µ 6= µ0

The test can be carried out at specified level of significance, say α percent. If we have
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given that the variance is known, then reject H0

⇔

∣∣∣∣∣ x− µ0√
σ2/n

∣∣∣∣∣ ≥ z1−α/2

⇔ x− µ0√
σ2/n

≥ z1−α/2 or
x− µ0√
σ2/n

≤ z1−α/2

⇔ µ0 ≤ x− z1−α/2

√
σ2

n
or µ0 ≥ x− z1−α/2

√
σ2

n
⇔ µ0 outside 100(1− α)% the confidence interval.

If the variance σ2 is unknown, then reject H0

⇔

∣∣∣∣∣ x− µ0√
s2/n− 1

∣∣∣∣∣ ≥ tn−1;1−α/2

⇔ x− µ0√
s2/n− 1

≥ tn−1;1−α/2 or
x− µ0√
s2/n− 1

≤ tn−1;1−α/2

⇔ µ0 ≤ x− tn−1;1−α/2

√
s2

n− 1
or µ0 ≥ x− tn−1;1−α/2

√
s2

n− 1
⇔ µ0 outside 100(1− α)% the confidence interval.

Also,consider testing H0:σ2 = σ2
0 versus H1: σ2 6= σ2

0

Suppose µ is unknown, we reject H0

⇔ ns2

σ2
0

≤ χ2
n−1;α/2 or

ns2

σ2
0

≥ χ2
n−1;1−α/2

⇔ σ2
0 ≥

ns2

χ2
n−1;α/2

or σ2
0 ≤

ns2

χ2
n−1;1−α/2

⇔ σ2
0 outside 100(1− α)% the confidence interval.

Note The usefulness of the strong relationship between two-sided tests of hypothesis
and confidence sets is one can be used to construct the other but also in the result that
often an optimal property of one carries over the other. That is, if one can find a test that
is optimal in some sense, then the corresponding constructed confidence is also optimal in
some sense.

4.8 Large sample distribution of generalized likelihood ratio

The exact distribution of the generalized likelihood ratio statistic Λn is usually difficult
to obtain. An example where the exact distribution of Λn is known is that of the normal
distribution N(θ;σ2), with σ2 known. For the null hypothesis H0 : θ = θ0 we found (see
before)

Λn = e

−
1

2

(
X − θ0√
σ2/n

)2
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Hence,

−2lnΛn =

(
X − θ0√
σ2/n

)2

and, under H0, this is exactly χ2(1)-distributed.
It turns out that, in general, the statistic

Dn = −2lnΛn

is more convenient for asymptotic considerations.

Theorem

Let X1, . . . , Xn be a random sample from X with density f(x; θ∼) where θ∼= (θ1, . . . , θk) ∈ Θ

and Θ is a k-dimensional subset of IRk.
Consider the null hypothesis

H0 : θ1 = θ0
1, θ2 = θ0

2, . . . , θr = θ0
r

where θ0
1, . . . , θ

0
r are known constants (1 ≤ r ≤ k) and where θr+1, . . . , θk are unspecified.

Under regularity conditions, we have under H0, as n→∞ :

Dn = −2lnΛn
d→ χ2(r)

Note that the number of degrees of freedom of the limiting χ2-distribution equals the
number of parameters specified by H0.

‘Proof’

(We only give a sketch of the proof in the one parameter case (k = 1) and for a simple
null hypothesis H0 : θ = θ0)).
In this case (with notations from ML theory) :

λ(x∼) =
L(θ0;x∼)

L(θ
∧
n;x∼)
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where θ
∧
n = t(x1, . . . , xn) is the ML estimate for θ.

Hence :

−2lnλ(x∼) = 2[l(θ
∧
n;x∼)− l(θ0;x∼)].

Taylor expansion of l(θ0;x∼) around l(θ
∧
n;x∼) gives :

l(θ0;x∼)− l(θ
∧
n;x∼) ≈ (θ0 − θ

∧
n)S(θ

∧
n;x∼)−

1

2
(θ0 − θ

∧
n)2I(θ

∧
n;x∼).

Since S(θ
∧
n;x∼) = 0 :

−2lnλ(x∼) ≈ (θ
∧
n − θ0)2I(θ

∧
n;x∼).

From this one can prove (with Tn = t(X1, . . . , Xn) the ML estimator for θ) :

Dn ≈ (Tn − θ0)2I(Tn;X∼ )

≈ (Tn − θ0)2I(θ0;X∼ )

=


√
n(Tn − θ0)√

1

i(θ0)


2

1

i(θ0)

I(θ0;X∼ )

n
.

By the asymptotic normality of the ML estimator

√n(Tn − θ0)√
1

i(θ0)


2

d→ χ2(1)

Also :

I(θ0;X∼ )

n

P→ i(θ0).

Hence, by Slutsky’s theorem : Dn
d→ χ2(1). �

We now give some examples of the Dn-statistic in the case of a simple null hypothesis
H0 : θ∼= θ∼0. We have :
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Dn = 2[l(T∼n;X∼ )− l(θ∼0, X∼ )]

where l = lnL is the loglikelihood function and T∼n is the ML estimator for θ∼.

Example [Normal]

X ∼ N(θ;σ2), σ2 known.
H0 : θ = θ0

L(θ;x∼) =

(
1

σ
√

2π

)n
e

−
1

2σ2

n∑
i=1

(xi − θ)2

l(θ;x∼) = −nln(σ
√

2π)− 1

2σ2

n∑
i=1

(xi − θ)2

Tn = X =
1

n

n∑
i=1

Xi

Dn =
1

σ2

[
n∑
i=1

(Xi − θ0)2 −
n∑
i=1

(Xi −X)2

]
=

n

σ2
(X − θ0)2

Dn =

X − θ0√
σ2

n


2

Example [Binomial]

X ∼ B(1; θ)
H0 : θ = θ0

L(θ;x∼) = θ

∑
xi

(1− θ)
n−
∑
xi

l(θ;x∼) = (
∑
xi)lnθ + (n−

∑
xi)ln(1− θ)

Tn = X =
1

n

n∑
i=1

Xi

Dn = 2n

[
ln

(
X

θ0

)
X + (1−X)ln

(
1−X
1− θ0

)]
.

Example [Poisson]

X ∼ P (θ)
H0 : θ = θ0

l(θ;x∼) = −ln(x1! . . . xn!)− nθ + (
∑
xi)lnθ
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Tn = X

Dn = 2n

[
Xln

(
X

θ0

)
+ θ0 −X

]
.

Example [Multinomial]

X∼ ∼M(n; (θ1, . . . , θk))

H0 : θi = θ0
i , i = 1, . . . , k

l(θ1, . . . , θk;x∼) = ln

(
n!

x1! . . . xk!

)
+

k∑
i=1

xilnθi

T∼n =

(
X1

n
, . . . ,

Xk

n

)
Dn = 2

[
l

(
X1

n
, . . . ,

Xk

n
;X∼

)
− l(θ0

1, . . . , θ
0
k;X∼ )

]
Dn = 2

k∑
i=1

Xiln

(
Xi

nθ0
i

)

Two other statistics related to Dn = −2lnΛn

In the one parameter case we had

Dn ≈ (Tn − θ0)2I(Tn;X∼ )

In the k-parameter case, this becomes

Dn ≈ (T∼n− θ∼0)I(T∼n;X∼ )(T∼n− θ∼0)′

where T∼n is the ML estimator and I(θ∼;x∼) is the information matrix.

� Replace the elements of the matrix I(θ∼;X∼) by their expected values. This amounts
in replacing I(θ∼;X∼ ) by nB(θ∼), where B(θ∼) is the Fisher-information matrix.

This leads to

Wn = n(T∼n− θ∼0)B(T∼n)(T∼n− θ∼0)′

which is the statistic, introduced by Wald.

� Recall that the ML estimate θ
∧
∼n satisfies the equations S(θ

∧
∼n;x∼) = 0∼, i.e.

(S1(θ
∧
∼n;x∼), . . . , Sk(θ

∧
∼n;x∼)) = (0, . . . , 0).
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For j = 1, . . . , k, we have by multivariate Taylor expansion :

0 = Sj(θ
∧
∼n;x∼)

≈ Sj(θ∼0;x∼) +
k∑
i=1

(θ
∧
ni − θ0i)

∂Sj
∂θi

(θ∼0;x∼)

= Sj(θ∼0;x∼)−
k∑
i=1

(θ
∧
ni − θ0i)Iij(θ∼0;x∼)

where I(θ0;x∼) = [Iij(θ∼0;x∼)]i,j=1,...,k is the information matrix.
Hence, for j = 1, . . . , k :

Sj(θ∼0;x∼) ≈
k∑
i=1

(θ
∧
ni − θ0i)Iij(θ∼0;x∼).

Thus :

S(θ∼0;x∼) ≈ (θ
∧
∼n− θ∼0)I(θ∼0;x∼).

Or :

θ
∧
∼n− θ∼0 ≈ S(θ∼0;x∼)I

−1(θ∼0;x∼).

From this one can prove

T∼n− θ∼0 ≈ S(θ∼0;X∼ )I−1(θ∼0;X∼ ).

Then :

Dn ≈ (T∼n− θ∼0)I(T∼n;X∼ )(T∼n− θ∼0)′

≈ (T∼n− θ∼0)I(θ∼0;X∼ )(T∼n− θ∼0)′

≈ S(θ∼0;X∼ )I−1(θ∼0;X∼ )S′(θ∼0;X∼ ).

This is the statistic introduced by C.R. Rao :

Vn =
1

n
S(θ∼0;X∼ )B−1(θ∼0)S′(θ∼0;X∼ ).

Note that the computation of this statistic does not require computation of the
ML-estimator.
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Theorem

Under regularity conditions, we have under H0 : θ∼= θ∼0, as n→∞ :

Dn,Wnand Vn each converge in distribution to χ2(k).

Example [Multinomial]

X∼ = (X1, . . . , Xk) ∼M(n; (θ1, . . . , θk))

The 3 statistics for testing H0 : θi = θ0
i (i = 1, . . . , k) can be calculated :

Dn = 2

k∑
i=1

Xiln

(
Xi

nθ0
i

)

Wn =

k∑
i=1

(Xi − nθ0
i )

2

Xi

Vn =
k∑
i=1

(Xi − nθ0
i )

2

nθ0
i

.

Each of these statistics has χ2(k − 1) as limiting distribution (there are only k − 1 func-
tionally independent parameters, since θ1 . . .+ θk = 1).
The statistics Wn and Vn are often called goodness of fit statistics. Vn is known as the
Pearson statistic.

4.9 Hypothesis testing using R

Some of the R codes discussed in this section are used to test hypothesis as well as to
construct confidence intervals
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Test on the mean of a normal population

> ##Testing a mean of a normal population

> ## Assume that the observations are taken from a normal population

>

> ## Compute the t statistic. Note we assume mu=25 under H_0 and mu<25

> ##under the alternative

> xbar=22;s=1.5;n=10

> t = (xbar-25)/(s/sqrt(n))

> t

[1] -6.324555

> ## use pt to get the distribution function of t

> pt(t,df=n-1)

[1] 6.846828e-05

> ##This is a small p-value (0.000068). Thus H_0 is rejected.

Confidence interval for proportion using in-built R function Note that this R
function is also used for constructing confidence intervals for proportions



204 CHAPTER 4. HYPOTHESIS TESTING

> ##Proportion test. In-built test

> #One sample problem

> #General form:

> #prop.test(x,n,p=NULL,alternative=c("two.sided","less","greater",

> #conf.level=1-alpha,correct=TRUE)

> #x=a vector of counts of successes or a matrix with 2 columns giving

> # the counts of successes and failures, respectively.

> #a vector of counts of trials

> #a vector of probabilities of success

> #alternative= a character string specifying the alternative hypothesis

> #conf.level =confidence level of the returned confidence interval

> #correct a logical indicating whether Yates continuity correction

> # should be applied.

> #Consider a simple survey. You ask 100 people (randomly chosen)

> #and 42 say "yes" to your question. Does this

> #support the hypothesis that the true proportion is 50%?

> prop.test(42,100,p=.5)

1-sample proportions test with continuity correction

data: 42 out of 100, null probability 0.5

X-squared = 2.25, df = 1, p-value = 0.1336

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.3233236 0.5228954

sample estimates:

p

0.42

> #Note the p-value of 0.1336.

> #The p-value reports how likely we are to see this data or

> #worse assuming the null hypothesis.

> #Now, the p-value is not so small as to make an observation

> #of 42 seem unreasonable in 100 samples assuming the

> #null hypothesis. Thus, one would "accept" the null hypothesis.

> #Note also that this R-code provided a 95% confidence interval

> #for the proportion of "yes" answer.

> ##We can also make one sided tests and construct

#one sided confidence interval using the following R commands

> prop.test(42,100,p=.5,alternative="less")

1-sample proportions test with continuity correction

data: 42 out of 100, null probability 0.5

X-squared = 2.25, df = 1, p-value = 0.06681

alternative hypothesis: true p is less than 0.5

95 percent confidence interval:

0.0000000 0.5072341

sample estimates:

p

0.42

> prop.test(42,100,p=.5,alternative="greater")

1-sample proportions test with continuity correction

data: 42 out of 100, null probability 0.5

X-squared = 2.25, df = 1, p-value = 0.9332

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.3372368 1.0000000

sample estimates:

p

0.42
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Two-sample tests and confidence intervals of mean

> ##Two-sample tests and confidence interval

# using built-in R function.

> # Equal variances is assumed.

> #Suppose the recovery time for patients taking a new

# drug is measured (in days). A placebo group is also used

> #to avoid the placebo effect. The data are as follows

> #with drug: 15 10 13 7 9 8 21 9 14 8

> #placebo: 15 14 12 8 14 7 16 10 15 12

> #A one-sided test for equivalence of means using the t-test is needed.

> #This tests the H_0 of equal means against H_1 that the drug group

> # has a smaller mean. (mu1-mu2 < 0).

> x=c(15,10,13,7,9,8,21,9,14,8)

> y=c(15,14,12,8,14,7,16,10,15,12)

> t.test(x,y,alt="less",var.equal=TRUE)

Two Sample t-test

data: x and y

t = -0.5331, df = 18, p-value = 0.3002

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf 2.027436

sample estimates:

mean of x mean of y

11.4 12.3

> #We fail to reject H_0 based on this test.

> # Note also the one sided upper 95% confidence interval for mu1-mu2.

> #Instead of assuming the equality of the variances we can test for

> #their equality

> qf(0.975,9,9)

[1] 4.025994

> var(x)

[1] 18.93333

> var(y)

[1] 9.566667

> F.ratio<-var(x)/var(y)

> F.ratio

[1] 1.979094

> #Since F.ratio is smaller than the tabulated value of F we "accept"

> #the hypothesis that the two variances are equal and proceed with

> #the previous test.

Two-sample t-test when the variances are not equal
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># Two sample t-test when the variances are not equal.

#Consider now the following problem:

> #Let us consider the following data on ozone levels (in ppm)

> # taken on 10 days in two market gardens. Assuming that the

> #observations are taken from normal populations we wish to compare

> # the population means.

> gardenA <- c(3,4,4,3,2,3,1,3,5,2)

>

> gardenB <- c(5,5,6,7,4,4,3,5,6,5)

> #This time let us compare the population variances using built

> # in function of R.

> var.test (gardenA, gardenC)

F test to compare two variances

data: gardenA and gardenC

F = 0.0938, num df = 9, denom df = 9, p-value = 0.001624

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.02328617 0.37743695

sample estimates:

ratio of variances

0.09375

> #In this case the variances are not equal. Hence we can not use

> #the previous method. Instead we use two-sample t-test developed

# by Welch.

> #This test is an approximate solution to the Behrens-Fisher problem.

> t.test(gardenA,gardenC)

Welch Two Sample t-test

data: gardenA and gardenC

t = -1.6036, df = 10.673, p-value = 0.1380

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-4.7554137 0.7554137

sample estimates:

mean of x mean of y

3 5

> #Conclusion: The ozone levels in this two gardens are the "same".

## One sided test and confidence interval (Two sample problem)

> prop.test(c(45,56),c(45+35,56+47),alternative="less")

2-sample test for equality of proportions with

continuity correction

data: c(45, 56) out of c(45 + 35, 56 + 47)

X-squared = 0.0108, df = 1, p-value = 0.5414

alternative hypothesis: less

95 percent confidence interval:

-1.0000000 0.1517323

sample estimates:

prop 1 prop 2

0.5625000 0.5436893

> prop.test(c(45,56),c(45+35,56+47),alternative="greater")

2-sample test for equality of proportions with

continuity correction

data: c(45, 56) out of c(45 + 35, 56 + 47)

X-squared = 0.0108, df = 1, p-value = 0.4586

alternative hypothesis: greater

95 percent confidence interval:

-0.1141109 1.0000000

sample estimates:

prop 1 prop 2

0.5625000 0.5436893

> ##we observe that the p-value is 0.9172 so we accept the

> ## null hypothesis that P1 = P2.

>

> ## Note that a 95% two-sided and one-sided confidence

> ## interval for P1-P2 are also given.
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Two-sample tests and confidence interval of proportion

> ##Two-sample tests and confidence interval of proportion .

> #General form:

> #prop.test(c(x1,x2),c(n1-x1,n2-x2),p=NULL,alternative=

> #c("two.sided","less","greater",conf.level=1-alpha,correct=TRUE)

> #where x1= the number of success in the first sample

> # x2=the number of success in the second sample

> #A survey is taken two times over the course of two weeks.

> #The first week you asked 80 people (randomly chosen)

> #and 45 say "yes" to your question.

> #The second week you asked the same question 103 people

> # and 56 answered "yes".

> #The standard hypothesis test is H0 : P1 equal P2 against the

> # alternative (two-sided) H1 : P1 not equal P2

> prop.test(c(45,56),c(45+35,56+47))

2-sample test for equality of proportions with

continuity correction

data: c(45, 56) out of c(45 + 35, 56 + 47)

X-squared = 0.0108, df = 1, p-value = 0.9172

alternative hypothesis: two.sided

95 percent confidence interval:

-0.1374478 0.1750692

sample estimates:

prop 1 prop 2

0.5625000 0.5436893
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4.10 Exercises

1. Let X have a Bernoulli distribution, where P [X = 1]=θ, P (X = 0)=1-θ, for a random
sample of size n=10, test H0 : θ ≤ 1

2 versus H1 : θ > 1
2 . Use the critical region

n∑
i=1

xi ≥ 6, find the power function and the size of the test.

2. Let X be a single observation from the density;

f(x; θ) = θxθ−1I(0,1)(x)

Find the generalized likelihood ratio test of size α of H0 : θ = 1 versus H1 : θ 6= 1.

3. Let X1, . . . , Xn be a random sample from the poisson distribution,

fx;θ =
e−θ(θ)x

x!
, x = 0, 1, 2, . . .

(a) Find the UMP test of H0 : θ = θ0 versus H0 : θ > θ0

(b) Test H0 : θ = θ0 versus H0 : θ 6= θ0

Find the general form of the critical region corresponding to the test arrived at
using the generalized likelihood ratio principle. (The critical region should be
defined in terms of

∑
iXi)

4. Let X1, . . . , Xm be a random sample from the density θ1x
θ1−1I(0,1)(x)

and Y1, . . . , Yn be a random sample from the density θ2x
θ2−1I(0,1)(y)

Assume that the samples are independent. Set Ui = −lneXi , i = 1, 2, . . . ,m and
Vj = −lneYj , j = 1, 2, . . . , n.

(a) Find the generalized likelihood ratio for testing H0 : θ1 = θ2 versus H1 : θ1 6= θ2

(b) Show that the generalized likelihood ratio test can be expressed in terms of the
statistic

T =

∑
i Ui∑

i Ui +
∑

j Vj

5. Find the generalized likelihood ratio test of size α for testing H0 : θ ≤ 1versusH1 : θ >
1 on the basis of a random sample X1, . . . , Xn from f(x; θ) = θe−θxI(0,∞)(x).

6. Let X be a single observation from the density f(x; θ) = (1+θ)xθI(0,1)(x) where θ > −1.

(a) Find the most powerful size α test of H0 : θ = 0 versus H1 : θ = 1

(b) Is there a uniformly most powerful size-α test of H0 < 0 versus H1 : θ > 0 ? If
so what is it?

7. Let X1, . . . , Xn be a random sample from θ1e
−θxI(0,∞)(x) and let Y1, . . . , Yn be a ran-

dom sample from θ2e
−θyI(0,∞)(y). Assume that the two samples are independent.
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(a) find the generalized likelihood ration for testing H0 : θ1 = θ2 versus H1 : θ1 6= θ2.

(b) Show that the generalized ratio test can be expressed in terms of the statistic

T =
∑
iXi∑

iXi+
∑
j Yj

8. Use the confidence interval technique to derive a test of H0 : µ1 = µ2 versus H1 : µ1 6=
µ2 in sampling from the bivariate normal distribution. Such a test is often called
paired t-test.

9. Given the sample -4,4,4,2,-4.8 from a normal population with variance 4, and the sam-
ple 6,1,3.2,-0.4 from a normal population with variance 5, test at 0.05 level that the
means differ by no more than one unit.

10. A metallurgist made four determination of the melting point of manganese:1269,1271,1263,
and 1265 degree centigrade. Test the hypothesis that the mean µ this of population
is with in 5 degree centigrade of the published value of 1260.(use α = 0.05,assume
normality and σ2 = 5)

11. Let X1, . . . , Xn be a random sample of size n from a normal density with known vari-
ance. what is the best critical region for testing the null hypothesis that the mean
is 6 against the mean is 4?

12. Derive a test of H0 : σ2 < 10 against H1 : σ2 ≥ 10 for a sample of size n from a
normal population with a mean of zero.

13 A cigarette manufacturer sent each of two laboratories presumably identical samples
of tobacco. each made five determination of the nicotine content in milligrams as
follows: (i) 24,27,26,21,and 24 (ii) 27,28,23,31 and 26. Were the two laboratories
measuring the same thing? (Assume normality and common variance).

14. Given the samples 1.8,2.9,1.4,1.1 and 5,8.6,9.2 from normal populations, test whether
the variances are equal at 0.05 level.

15. If X1, . . . , Xn are observations from normal populations with known variances
σ2

1, σ
2
2, . . . , σ

2
n, how would one test whether their means are all equal?

16. A prominent baseball player’s batting average dropped from 0.313 in one year to 0.280
in the following year.He was at bat 374 times during the first year and 268 times
the second year. Is the hypothesis tenable at the 0.05 level that his hitting was the
same during the two years?

17. Find the likelihood ratio statistic for testing H0 : θ = θ0 versus H1 : θ 6= θ0 using a
random sample of size n from exponential density with parameter θ.
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18. A study of pain and activity for good and poor sleepers yielded the following statistics:
Among 28 good sleepers, the hours of activity had mean x = 10.7 and s.d. = 4.8. For
70 poor sleepers the statistics were y = 8.6 and s.d = 4.8. determine an approximate
Z-score for the mean difference that one could use in testing the hypothesis µX = µY .

19. A manufacturer claims that the life time of a certain brand of batteries produced by
his factory has a variance of 5, 000(hours2). A sample of size 26 has a variance of
7200(hours2. Assuming that it is reasonable to treat these data as a random sample
from a normal population.Test the manufacturer’s claim of variance at 2 percent of
level of significance.

20. The rainfall at a certain station during a year may be assumed to be normally dis-
tributed random variable with, σ = 3 inches and unknown mean µ. For the past ten
years, a record provides the following rainfalls: x1 = 30.5, x2 = 34.1, x3 = 27.9, x4 =
29.4, x5 = 35.0, x6 = 26.9, x7 = 30.2, x8 = 28.3, x9 = 31.7, x10 = 25.8. Test the
hypothesis H0 : µ = 30 versus H1 : µ < 30 at 5 percent of level of significance.

21. A manufacturer claims that packages of certain goods contain 18 ounces. In order
to check his claim, 100 packages are chosen at random from a large lot and it is
found that

∑100
j=1 xj = 1752 and

∑100
i=1 x

2
i = 31, 157. Make the appropriate assump-

tions and test the hypothesis H0 that the manufacturers claim is correct against the
appropriate alternative at level of significance α = 0.01.

22. The number X of fatal traffic accidents in a certain city during a year may assumed
to be a random variable distributed as Poisson with parameter λ. For the latest year
x = 14, where as for the past several years the average was 20. Test whether it has
been an improvement at one percent of level of significance.
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Appendix A

Mathematical addendum

A.1 Introduction

The purpose of this appendix is to provide the reader with a ready reference to some
mathematical results that are used in the book. This appendix is divided into two main
sections: The first section, gives results that are, for the most part, combinatorial in
nature, and the last gives results from calculus.

A.2 Non-calculus

1. A companion series, the finite geometric series, or progression, is given by

n−1∑
j=0

arj = a
1− rn

1− r

and an arithmetic series or progression, is given by

n∑
j=1

[a+ (j − 1)d] = na+
d

n
n− 1

.

2. A product of a positive integer n by all the positive integers smaller than it is usually
denoted by n! (read “n factorial”). Thus

n = n(n− 1)(n− 2), . . . , 1 =
n−1∏
j=0

(n− j)

By convention we take 0! = 1

3. A product of a positive integer n by the next k - 1 smaller positive integers is usually
denoted by (n)k. Thus

(n)k = n(n− 1), . . . , (n− k + 1) =

k∏
j=1

(n− j + 1)

1
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Binomial coefficient:

 n

k

 = n!
k!(n−k)! for positive n and k ≤ n

4. Stirling’s Formula
In finding numerical values of probabilities, one is often confronted with the evalu-
ation of long factorial expressions which can be troublesome to compute by direct
multiplication. Much labor may be saved by using Stirling’s formula, which gives an
approximate value of n!. Stirling’s formula is

n! ≈ (2π)
1
2 e−nnn+ 1

2

or
n! ≈ (2π)

1
2 e−nnn+ 1

2 e
r(n)
12n ,

where

1− 1

12n+ 1
< r(n) < 1

5. The binomial and multinomial theorems
The binomial theorem is often given as

(a+ b)n =
n∑
j=0

 n

j

 ajbn−j

for n a positive integer. The binomial theorem explains why the

 n

j

 are some-

times called binomial coefficients. Four special cases are noted in the following
remark. Remark

(1 + t)n =

n∑
j=0

 n

j

 tj ,

(1− t)n =
n∑
j=0

 n

j

 (−1)jtj ,

2n =
n∑
j=0

 n

j


and

0 =

n∑
j=0

(−1)j

 n

j

 .
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Expanding both sides of

(1 + x)a(1 + x)b = (1 + x)a+ b

and then equating coefficients of x to the nth power gives

n∑
j=0

 a

j


 b

n− j

 =

 a+ b

n


a formula that is particularly useful in considerations of the hypergeometric distri-
bution. The following formula are also useful;

∞∑
j=0

 n+ j − 1

j

 aj = (1− a)−n

∞∑
j=0

xtx =
1

(1− t)2

∞∑
j=0

x(x− 1)tx =
2t2

(1− t)3

A generalization of the binomial theorem is the multinomial theorem, which is

(
k∑
j=1

aj)
n =

∑ n!
k∏
i=1

ni!

k∏
i=1

anii ,

where the summation is overall nonnegative integers n1, n2, . . . , nk which sum to n.
A special case is

(

k∑
j=1

aj)
2 = (

k∑
i=1

ai)(

k∑
j=1

aj) =

k∑
i=1

k∑
j=1

aiaj .

Also note that

(
m∑
i=1

ai)(
n∑
j=1

bj) =
m∑
i=1

n∑
j=1

aiaj .

A.3 Calculus

1. It is assumed that the reader is familiar with the concepts of limits, continuity, dif-
ferentiation, integration, and infinite series. A particular limit that is referred to
several times is the limit expression for the number e ; that is,

lim
x→0

(1 + x)
1
x = e



4 APPENDIX A. MATHEMATICAL ADDENDUM

There are a number of variations of the above equation, for instance,

lim
x→∞

(1 +
1

x
)x = e

lim
n→∞

(1− λ

n
)n = e−λ

and

lim
x→0

(1 + xλ)
1
x = eλ

for a constant λ.

2. Another rule that we might use is Leibniz rule for differentiating an integral: Let

I(t) =

∫ h(t)

g(t)
f(x; t) dx

where f(.; .), g(.), and h(.) are assumed differentiable. Then

dI

dt
=

∫ h(t)

g(t)

∂f

∂x
dx+ f(h(t); t)

dh

dt
− f(g(t); t)

dg

dt

Several important special cases derive from Leibniz rule; for example, if the integrand
f(x; t) does not depend on t, then

d

dt

[∫ h(t)

g(t)
f(x) dx

]
= f(h(t))

dh

dt
− f(g(t))

dg

dt
;

in practice, if g(t) is constant and h(t) = t, the above equation simplifies to

d

dt

[∫ t

c
f(x) dx

]
= f(t)

3. The Taylor Series for f(x) about x=a is defined as

f(x) = f(a) + f (1)(a)(x− a) +
f (2)(a)(x− a)2

2!
+ . . .+

f (n)(a)(x− a)n

n!
+Rn

where

f (1)(a) =
dif(x)

dxi
|x=a; R(n) =

f (n+1)(c)(x− a)n+1

(n+ 1)!

and a ≤ c ≤ x. Rn is the remainder. f(x) is assumed to have derivatives of at least
order n+ 1.
The Taylor series for functions of one variable given above can be generalized to the
Taylor series for functions of several variables. For example, the Taylor series for
f(x, y) about x = a and y = b can be written as

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)+

1

2!

[
fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2

]
+ ....,
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where

fx(a, b) =
∂f

∂x
|x=a,y=b,

fxy(a, b) =
∂2f

∂x∂y
|x=a,y=b,

and similarly for the others.

4. The Gamma and Beta functions
The gamma function, denoted by Γ(.), is defined by

Γ(t) =

∫ ∞
0

xt−1e−x dx

for t¿0.
Γ(t) is nothing more than a notation for the definite integral that appears on the
right hand side of the above equation. Integrating by part yields

Γ(t+ 1) = tΓ(t),

and, hence, if t=n (an integer ),

Γ(n+ 1) = n!

If n is an integer,

Γ(n+
1

2
) =

1.3.5...(2n− 1)

2n
√
π

and, in particular,

Γ(
1

2
) = 2Γ(

3

2
) =
√
π.

The beta function, denoted by B(.,.)is defined by

Beta(a, b) =

∫ 1

0
xa−1(1− x)b−1 dx

For a > 0, b > 0
Again, Beta(a, b) is just a notation for the definite integral that appears on the right-
hand side of the above equation. A simple variable substitution gives Beta(a, b) =
Beta(b, a). The beta function is related to the gamma function according to the
following formula:

Beta(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
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Table 1 : Standard normal distribution

x

F (x)

Φ(x) =
x∫
−∞

1√
2π

e−t
2/2dt

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
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Table 1 : Standard normal distribution

x

F (x)

Φ(x) =
x∫
−∞

1√
2π

e−t
2/2dt

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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Table 2 : Critical points of Student t-distributions

P

0
critical point

P

.25 .10 .05 .025 .010 .005 .001

d.f.

1 1.000 3.078 6.314 12.706 31.821 63.657 318.31

2 .816 1.886 2.920 4.303 6.965 9.925 22.326

3 .765 1.638 2.353 3.182 4.541 5.841 10.213

4 .741 1.533 2.132 2.776 3.747 4.604 7.173

5 .727 1.476 2.015 2.571 3.365 4.032 5.893

6 .718 1.440 1.943 2.447 3.143 3.707 5.208

7 .711 1.415 1.895 2.365 2.998 3.499 4.785

8 .706 1.397 1.860 2.306 2.896 3.355 4.501

9 .703 1.383 1.833 2.262 2.821 3.250 4.297

10 .700 1.372 1.812 2.228 2.764 3.169 4.144

11 .697 1.363 1.796 2.201 2.718 3.106 4.025

12 .695 1.356 1.782 2.179 2.681 3.055 3.930

13 .694 1.350 1.771 2.160 2.650 3.012 3.852

14 .692 1.345 1.761 2.145 2.624 2.977 3.787

15 .691 1.341 1.753 2.131 2.602 2.947 3.733

16 .690 1.337 1.746 2.120 2.583 2.921 3.686

17 .689 1.333 1.740 2.110 2.567 2.898 3.646

18 .688 1.330 1.734 2.101 2.552 2.878 3.610

19 .688 1.328 1.729 2.093 2.539 2.861 3.579

20 .687 1.325 1.725 2.086 2.528 2.845 3.552
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Table 2 : Critical points of Student t-distributions

P

0
critical point

P

.25 .10 .05 .025 .010 .005 .001

d.f.

21 .686 1.323 1.721 2.080 2.518 2.831 3.527

22 .686 1.321 1.717 2.074 2.508 2.819 3.505

23 .685 1.319 1.714 2.069 2.500 2.807 3.485

24 .685 1.318 1.711 2.064 2.492 2.797 3.467

25 .684 1.316 1.708 2.060 2.485 2.787 3.450

26 .684 1.315 1.706 2.056 2.479 2.779 3.435

27 .684 1.314 1.703 2.052 2.473 2.771 3.421

28 .683 1.313 1.701 2.048 2.467 2.763 3.408

29 .683 1.311 1.699 2.045 2.462 2.756 3.396

30 .683 1.310 1.697 2.042 2.457 2.750 3.385

40 .681 1.303 1.684 2.021 2.423 2.704 3.307

60 .679 1.296 1.671 2.000 2.390 2.660 3.232

120 .677 1.289 1.658 1.980 2.358 2.617 3.160

∞ .674 1.282 1.645 1.960 2.326 2.576 3.090
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Table 3 : Critical points of χ2-distributions

FigTab5-eps-converted-to.pdf

P

.250 .100 .050 .025 .010 .005 .001

d.f.

1 1.32 2.71 3.84 5.02 6.63 7.88 10.8

2 2.77 4.61 5.99 7.38 9.21 10.6 13.8

3 4.11 6.25 7.81 9.35 11.3 12.8 16.3

4 5.39 7.78 9.49 11.1 13.3 14.9 18.5

5 6.63 9.24 11.1 12.8 15.1 16.7 20.5

6 7.84 10.6 12.6 14.4 16.8 18.5 22.5

7 9.04 12.0 14.1 16.0 18.5 20.3 24.3

8 10.2 13.4 15.5 17.5 20.1 22.0 26.1

9 11.4 14.7 16.9 19.0 21.7 23.6 27.9

10 12.5 16.0 18.3 20.5 23.2 25.2 29.6

11 13.7 17.3 19.7 21.9 24.7 26.8 31.3

12 14.8 18.5 21.0 23.3 26.2 28.3 32.9

13 16.0 19.8 22.4 24.7 27.7 29.8 34.5

14 17.1 21.1 23.7 26.1 29.1 31.3 36.1

15 18.2 22.3 25.0 27.5 30.6 32.8 37.7

16 19.4 23.5 26.3 28.8 32.0 34.3 39.3

17 20.5 24.8 27.6 30.2 33.4 35.7 40.8

18 21.6 26.0 28.9 31.5 34.8 37.2 42.3

19 22.7 27.2 30.1 32.9 36.2 38.6 43.8

20 23.8 28.4 31.4 34.2 37.6 40.0 45.3
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Table 3 : Critical points of χ2-distributions

FigTab5-eps-converted-to.pdf

P

.250 .100 .050 .025 .010 .005 .001

d.f.

21 24.9 29.6 32.7 35.5 38.9 41.4 46.8

22 26.0 30.8 33.9 36.8 40.3 42.8 48.3

23 27.1 32.0 35.2 38.1 41.6 44.2 49.7

24 28.2 33.2 36.4 39.4 43.0 45.6 51.2

25 29.3 34.4 37.7 40.6 44.3 46.9 52.6

26 30.4 35.6 38.9 41.9 45.6 48.3 54.1

27 31.5 36.7 40.1 43.2 47.0 49.6 55.5

28 32.6 37.9 41.3 44.5 48.3 51.0 56.9

29 33.7 39.1 42.6 45.7 49.6 52.3 58.3

30 34.8 40.3 43.8 47.0 50.9 53.7 59.7

40 45.6 51.8 55.8 59.3 63.7 66.8 73.4

50 56.3 63.2 67.5 71.4 76.2 79.5 86.7

60 67.0 74.4 79.1 83.3 88.4 92.0 99.6

70 77.6 85.5 90.5 95.0 100 104 112

80 88.1 96.6 102 107 112 116 125

90 98.6 108 113 118 124 128 137

100 109 118 124 130 136 140 149


